CHAPTER 4

Paraboloids

4.1 Circular and Elliptic Paraboloids.

Imagine the parabola

$$
x^{2}=4 q z,
$$

which is a parabola whose semi latus rectum is of length $2 q$.

I have drawn it in figure IV. 1 for $4 q=1$. The distance between vertex and focus is q, and the length of the latus rectum is $4 q$.

FIGURE IV. 1

Rotate this parabola about the vertical axis. You obtain a paraboloid of circular crosssection, or a circular paraboloid - like a telescope mirror (not Ritchey-Chrétien!), or a stirred cup of coffee.

Its equation is

$$
x^{2}+y^{2}=4 q z .
$$

If we introduce two lengths a and h by

$$
q=\frac{a^{2}}{2 h}
$$

the equation to the circular paraboloid becomes

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=\frac{2 z}{h}
$$

Of course a paraboloid need not be circular in cross-section, and the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{2 z}{h}
$$

represents an elliptic paraboloid. It cannot be obtained simply by rotation of a parabola.
If we were to translate the origin of the coordinate axes (without rotation), we would introduce terms in x, y and z as well as a constant term into the equation. If, further, we were to rotate the coordinate axes about the z - axis, we would introduce a term in $x y$.

Thus an equation of the form

$$
a x^{2}+2 h x y+b y^{2}+2 u x+2 v y+2 w z+d=0
$$

(with no terms in $\boldsymbol{z}^{\mathbf{2}}, \boldsymbol{y z}$ or $\mathbf{z x}$) represents a paraboloid in which the \boldsymbol{Z} axis is parallel to the symmetry axis of the paraboloid. This will be useful to recall in Section 7.1 of Chapter 7.

Neither a parabola nor a paraboloid has a centre of symmetry. Equation 4.1.6 contains an odd power of z. It is not unchanged if you substitute $-z$ for z.

4.2 Hyperbolic Paraboloid

The elliptical paraboloid described by equation 4.1 .6 is easy to visualize. Slightly less easy (but by no means unreasonably difficult) to visualize is a hyperbolic paraboloid, described by the equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{2 z}{h}
$$

This is saddle-shaped.
In the plane $y=0$, the cross section is a nose-down parabola similar to figure IV.1, with semi latus rectum of length $\frac{a^{2}}{h}$.

In the plane $x=0$, the cross-section is a nose-up parabola with semi latus rectum of length $\frac{b^{2}}{h}$.
In the plane $z=0$, the cross-section is two straight lines, $y= \pm \frac{b}{a} x$, which are the asymptotes to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

In the plane $z=\frac{1}{2} h$, the cross-section is the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

In the plane $z=-\frac{1}{2} h$, the cross-section is the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$. This is the conjugate hyperbola to $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.

Like the circular and elliptical paraboloids, the hyperbolic paraboloid is not a central quadric.

