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You have succeeded in separating the variables.  It is now just a matter of integrating the 

two sides.  From this point you are on your own. 
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This one is not homogeneous, and it will require a bit of inventiveness.   Multiply 

throughout b y: 

 

Multiply by y: 

0)3( 242 =−+
dx

dy
yxyxy  

Now let 2yz = , so that 
dx

dz

dx

dy
y

2

1
=  

The equation then becomes 

0
3

2

0)3(2

22

22

=
−

+

=−+

xz

xz

dx

dz

dx

dz
xzxz

 

 

The equation is now homogeneous and can be solved in the usual way by letting 

uxz =   so that u
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This is now easily integrable to give 
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The equation to be solved becomes 
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6.   This one is straightforward: 
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This is homogeneous in X and Y if  .2,0 == kh  
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It is then routine to obtain finally 
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[See the text to undstand why we need not add “+C”  to 3lnx. 

Multiply the original equation by x
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This is of Bernoulli form.   Divide throughout by y
3
 and proceed as shown: 
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9.   This can be solved in the same way as example 6 - probably the easiest way. 

However, it will be seen that the equation is exact, so let’s for practice solve it that way.   

That is to say we suppose that the solution is of the form 0),( =yxH , where 
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We could also write this as 
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