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CHAPTER 17 

VISUAL BINARY STARS 

 

 

 

17.1   Introduction 

 

Many stars in the sky are seen through a telescope to be two stars apparently close 

together.  By the use of a filar micrometer it is possible to measure the position of one 

star (the fainter of the two, for example) with respect to the other.  The position is usually 

expressed as the angular distance ρ (in arcseconds) between the stars and the position 

angle θ of the fainter star with respect to the brighter. (The separation can be determined 

in kilometres rather than merely in arcseconds if the distance from Earth to the pair is 

known.)  The position angle is measured counterclockwise from the direction to north.  

See figure XVII.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These coordinates (ρ , θ) of one star with respect to the other can, of course, easily be 

converted to (x , y) coordinates.  In any case, after the passage of many years (sometimes 

longer that the lifetime of an astronomer) one ends up with a table of coordinates as a 

function of time.  Because the orbital period is typically of the order of many years, and 

the available observations are correspondingly spread out over a long period of time, it 

needs to be pointed out that all position angles, which are measured with respect to the 

equator of date, need to be adjusted so as to refer to a standard equator, such as that of 

J2000.0.  I don’t wish to interrupt the flow of thought here by discussing this point 

(important though it is) in detail; suffice it to say that 
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   ,secsin)2000("200.2000 δα−×+θ=θ tt    17.1.1 

 

where t is the epoch of the observation in years, and the position angles are expressed in 

arcseconds. 

 

If one star appears to move in a straight line with respect to the other, it is probable that 

the two stars are not physically connected but they just happen to lie almost in the same 

line of sight.  Such a pair is called an optical pair or an optical double. 

 

However, if one star appears to describe an ellipse relative to the other, then the two stars 

are physically connected and are moving around their common centre of mass. 

 

The angular separation between the two stars is usually very small, of the order of 

arcseconds or less, and is not easy to measure.  Much more difficult to measure would be 

the distances of the two stars individually from their mutual centre of mass.  Close pairs 

are usually measured visually with a filar micrometer, and it is then almost invariably the 

case that what is measured is the position of the secondary with respect to the primary.  

Wider pairs, however, can be measured from photographs, or, today, from CCD images.  

In that case, not only are the measurements more precise, but it is possible to measure the 

position of each component with respect to background calibration stars, and hence to 

measure the position of each component with respect to the centre of mass of the system.  

This enables us to determine the mass ratio of the two components.  Pairs that are 

sufficiently wide apart for photographic measurements, however, come with their own set 

of problems.  If their angular separation is large, this could mean either that the real, 

linear separation in kilometres is large, or else that the stars are not very far from the Sun.  

In the former case, we may have to wait rather a long time (perhaps more than an average 

human lifetime) for the two stars to describe a complete orbit.  In the latter case, we may 

have to take account of complications such as proper motion or annual parallax. 

 

The brighter of the two stars is the primary, and the fainter is the secondary.  This will 

nearly always mean (though not necessarily so) that the primary star is also the more 

massive of the pair, but this cannot be assumed without further evidence.  If the two stars 

are of equal brightness, it is arbitrary which one is designated the primary.  If the two 

stars are of equal brightness, it can sometimes happen that, when they become very close 

to each other, they merge and cannot be distinguished until their separation is sufficiently 

great for them to be resolved again.  It may then not be obvious which of the two had 

been designated the “primary”. 

 

The orbit of the secondary around the primary is, of course, a keplerian ellipse.  But what 

one sees is the projection of this orbit on the “plane of the sky”.  (The “plane of the sky” 

is the phrase almost universally used by observational astronomers, and there is no 

substantial objection to it; formally it means the tangent plane to the celestial sphere at 

the position of the primary component.)  The projection of the true orbit on the plane of 

the sky is the apparent orbit, and both are ellipses.  The centre of the true ellipse maps on 

to the centre of the apparent ellipse, but the foci of the true ellipse do not map on to the 
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foci of the apparent ellipse.  The primary star is at a focus of the true ellipse, but it is not 

at a focus of the apparent ellipse.  The radius vector in the true orbit sweeps out equal 

areas in equal times, according to Kepler’s second law.  In projection to the plane of the 

sky, all areas are reduced by the same factor (cos i).  Consequently the radius vector in 

the apparent orbit also sweeps out equal areas in equal times, even though the primary 

star is not at a focus of the apparent ellipse. 

 

Having secured the necessary observations over a long period of time, the astronomer 

faces two tasks.  First the apparent orbit has to be determined; then the true orbit has to be 

determined. 

 

 

17.2    Determination of the Apparent Orbit 

 

The apparent orbit may be said to be determined if we can determine the size of the 

apparent ellipse (i.e. its semi major axis), its shape (i.e. its eccentricity), its orientation 

(i.e. the position angle of its major axis) and the two coordinates of the centre of the 

ellipse with respect to the primary star.  Thus there are five parameters to determine. 

 

The general equation to a conic section (see Section 2.7 of Chapter 2) is of the form 

 

  ,01222 22 =+++++ fygxbyhxyxa     17.2.1 

 

so that we can equally say that the apparent orbit has been determined if we have 

determined the five coefficients a, h, b, g, f.  Sections 2.8 and 2.9 described how to 

determine these coefficients if the positions of five or more points were given, and 

section 2.7 dealt with how to determine the semi major axis, the eccentricity, the 

orientation and the centre given a, h, b, g and f.   

 

We may conclude, therefore, that in order to determine the apparent ellipse all that need 

be done is to obtain five or more observations of (ρ , θ) or of (x ,  y), and then just apply 

the methods of section 2.8 and 2.9 to fit the apparent ellipse.  Of course, although five is 

the minimum number of observations that are essential, in practice we need many, many 

more (see section 2.9), and in order to get a good ellipse we really need to wait until 

observations have been obtained to cover a whole period.  But merely to fit the best 

ellipse to a set of (x ,  y) points is not by any means making the best use of the data.  The 

reason is that an observation consists not only of (ρ , θ) or of (x ,  y), but also the time, t.  

In fact the separation and position angle are quite difficult to measure and will have quite 

considerable errors, while the time of each observation is known with great precision.  

We have so far completely ignored the one measurement that we know for certain! 

 

We need to make sure that the apparent ellipse that we obtain obeys Kepler’s second law.  

Indeed it is more important to ensure this than blindly to fit a least-squares ellipse to n 

points. 
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If I were doing this, I would probably plot two separate graphs – one of ρ (or perhaps ρ2
) 

against time, and one of θ against time.  One thing that this would immediately achieve 

would be to identify any obviously bad measurements, which we could then reject.  I 

would draw a smooth curve for each graph.  Then, for equal time intervals I would 

determine from the graphs the values of ρ and dθ/dt and I would then calculate ρ2
 dθ/dt.  

According to Kepler’s second law, this should be constant and independent of time.  I 

would then adjust my preliminary attempt at the apparent orbit until Kepler’s second law 

was obeyed and ρ2
 dθ/dt was constant.  A good question now, is, which should be 

adjusted, ρ or θ ?  There may be no hard and fast invariable answer to this, but, generally 

speaking, the measurement of the separation is more uncertain than the measurement of 

the position angle, so that it would usually be best to adjust ρ. 

 

If we are eventually satisfied that we have the best apparent ellipse that satisfies as best as 

possible not only the positions of the points, but also their times, and that the apparent 

ellipse satisfies Kepler’s law of areas, our next task will be to determine the elements of 

the true ellipse. 

 

 

17.3   The Elements of the True Orbit 

 

Unless we are dealing with photographic measurements in which we have been able to 

measure the positions of both components with respect to their mutual centre of mass, I 

shall assume that we are determining the orbit of the secondary component with respect 

to the primary as origin and focus. 
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In figure XVII.2, which has tested my artistic talents and computer skills to the full, the 

blue plane is intended to represent the plane of the sky, as seen from “above” – i.e. from 

outside the celestial sphere.  Embedded in the plane of the sky is the apparent orbit of the 

secondary with respect to the primary as origin and focus.  The dashed arrow shows the 

colure (definition of “colure” – Section 6.3 of Chapter 6) through the primary, and points 

to the north celestial pole.  The primary star is not necessarily at a focus of the apparent 

ellipse, as discussed in the previous section.  As drawn, the position angle of the star is 

increasing with time – though of course in a real case it is equally likely to be increasing 

or decreasing with time. 

 

The black ellipse is the true orbit, and of course the primary is at a focus of it.  If it does 

not appear so in figure XVII.2, this is because the true orbit is being seen in projection.   

 

The elements of the true orbit to be determined (if possible) are   

 

a the semi major axis; 

 

e the eccentricity; 

 

i the inclination of the plane of the orbit to the plane of the sky; 

 

Ω the position angle of the ascending node; 

 

ω the argument of periastron; 

 

T the epoch of periastron passage. 

 

All of these will be familiar to those who have read Chapter 10, section 10.2.  Some 

comments are necessary in the context of the orbit of a visual binary star. 

 

Ideally, the semi major axis would be expressed in kilometres or in astronomical units of 

distance – but this is not possible unless the distance from Earth to the binary star is 

known.  If the distance is not known (as will often be the case), the semi major axis is 

customarily expressed in arcseconds. 

 

It is sometimes said that, from measurements of separation and position angle alone, and 

with no further information, and in particular with no spectroscopic measurements of 

radial velocity, it is not possible to determine the sign of the inclination of the true orbit 

of a visual binary star.  This may be a valid view, but, as the late Professor Joad might 

have said, it all depends on what you mean by “inclination”.  As with the orbits of planets 

around the Sun, as described in Chapter 10, Section 10.2, we take the point of view here 

that the inclination of the orbital plane to the plane of the sky is an angle that lies between 

0
o
 and 180

o
 inclusive; that is to say, the inclination is positive, and the question of its sign 

does not arise.  After all an inclination of, say, “−30
o
” is no different from an inclination 

of +150
o
.  Thus we cannot be ignorant of the “sign” of the inclination.  What we do not 

know, however, is which node is the ascending node and which is the descending node.  
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The Ω that is usually recorded in the analysis of the orbit of a visual binary unsupported 

by spectroscopic radial velocities is the node for which the position angle is less than 

180
o
 – and it is not known whether this is the ascending or descending node. 

 

If the inclination of the orbital plane is less than 90
o
, the position angle of the secondary 

will increase with time, and the orbit is described as direct or prograde.  If the position 

angle decreases with time, the orbit is retrograde. 

 

The orbital inclination of a spectroscopic binary cannot be determined from 

spectroscopic observations alone.  The inclination of a visual binary can be determined, 

although, as discussed above, it is not known which node is ascending and which is 

descending.  If the binary is both a visual binary and a spectroscopic binary, not only can 

the inclination be determined, but the ambiguity in the nodes is removed.  In addition, it 

may be possible to determine the masses of the stars; this aspect will be dealt with in the 

chapter on spectroscopic binary stars. 

 

Binary stars that are simultaneously visual and spectroscopic binaries are rare, and they 

are a copious source of valuable information when they are found.  Visual binary stars, 

unless they are relatively close to Earth, have a large true separation, and consequently 

their orbital speeds are usually too small to be measured spectroscopically.  

Spectroscopic binary stars, on the other hand, move fast in their orbits, and this is because 

they are close together – usually too close to be detected as visual binaries.   Binaries that 

are both visual and spectroscopic are usually necessarily relatively close to Earth. 

 

The element ω, the argument of periastron, is measured from the ascending node (or the 

first node, if, as is usually the case, the type of node is unknown) from 0
o
 to 360

o
 in the 

direction of motion of the secondary component.  

  

 

 

17.4    Determination of the Elements of the True Orbit 

 

I am assuming at this stage that we have used all the observations plus Kepler’s second 

law and have determined the apparent orbit well, and can write it in the form 

 

  .0222 22 =+++++ cfygxyhxyx ba     17.4.1 

 

[The coefficients a and b here, and e in equation 17.4.3, do not, of course, mean the 

semi major axis a, the semi minor axis b and eeccentricity e of the true ellipse.  It is 

thought that the reader will be unlikely confused by this, but I have nevertheless used 

slightly different fonts for them.] 

 

The origin of coordinates here is the primary star, which, although it is at the focus of the 

true ellipse, is not at the focus of the apparent ellipse.  The x-axis points west (to the 

right) and the y-axis points north (upwards), and position angle θ (measured 
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counterclockwise from north) is given by tan θ = −x/y.  Our task is now to find the 

elements of the true orbit. 

 

During the analysis we are going to be obliged, on more than one occasion, to determine 

the coordinates of the points where a straight line y = mx + d intersects the ellipse, so it 

will be worth while to prepare for that now and write a quick program for doing it 

instantly.  The x-coordinates of these points are given by solution of 

,02)2222()2( 222 =+++++++++ cfddxfmgmdhdxmhm bbba  17.4.2 

and the y-coordinates are given by solution of the equation 

,02)2222()2( 222 =+++++++++ cgygnfnhynhn eaeeaeab     17.4.3 

where ./and/1 mdmn −== e   If m is positive the larger solution for y corresponds 

to the larger solution for x;  If m is negative the larger solution for y corresponds to the 

smaller solution for x. 

 

If the line passes through F, so that d = 0, these equations reduce to 

 

  ,0)22()2( 22 =+++++ cxfmgxmhm ba      17.4.4 

 

and  .0)22()2( 22 =+++++ cygnfynhn ab      17.4.5 

 

In figure XVII.3 I draw the true ellipse in the plane of the orbit.  F is the primary star at a 

focus of the true ellipse.  C is the centre of the ellipse.  I have drawn also the auxiliary 

circle, the major axis (with periastron P at one end and apastron A at the other end), the 

latus rectum MN through F and the semi minor axis CK.   The ratio FC/PC is the 

eccentricity e of the true ellipse, and the ratio of minor axis to major axis is .1 2− e   

This is also the ratio of any ordinate on the auxiliary circle to the corresponding ordinate 

on the ellipse.  Thus I have extended the latus rectum and the semi minor axis by the 

reciprocal of this factor to meet the auxiliary circle in .K'andN',M'  
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Now, in figure XVII.4, we are going to look at the same thing as seen projected on the 

plane of the sky. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The true ellipse has become the apparent ellipse, and the auxiliary circle has become the 

auxiliary ellipse.  At the start of the analysis, we know only the apparent ellipse, which is 

given by equation 17.4.1, and the position of the focus F, which is at the origin of 

coordinates, (0 , 0).  F is not at a focus of the apparent ellipse, but C is at the centre of the 

apparent ellipse. 

 

From section 2.7, we can find the coordinates ),( yx  of the centre C.  These are 

)/,/( cfcg , where the bar denotes the cofactor in the determinant of coefficients.  

Thus the slope of the line FC, which is a portion of the true major axis, is ./ gf   We can 

now write the equation of the true major axis in the form y = mx hence, by use of 

equations 17.4.4 and 5, we can determine the coordinates of periastron P and apastron A.  

We can now find the distances FC and PC; and the ratio FC/PC, which has not changed 

in projection, is the eccentricity e of the true ellipse.   

 

Thus e has been determined. 

 

Our next step is going to be to find the slope of the projected latus rectum MN and the 

projected semi minor axis CK, which is, of course, parallel to the latus rectum.  If the 

equation to the projected latus rectum is y = mx, we can find the x-coordinates of  M and 

N by use of equation 17.4.4.  But if MN is a latus rectum, it is of course bisected by the 

major axis and therefore the length FM and FN are equal.  That is to say that the two 

solutions of equation 17.4.4 are equal in magnitude and opposite in sign, which in turn 

implies that the coefficient of x is zero.  Thus the slope of the latus rectum (and of the 

minor axis) is −g/f. 

 

FIGURE XVII.4 
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(It is remarked in passing that the projected major and minor axes are conjugate 

diameters of the apparent ellipse, with slopes fggf /and/ −  respectively.) 

 

Now that we have determined the slope of the projected latus rectum, we can easily 

calculate the coordinates of M and N by solution of equations 17.4.4 and 17.4.5.  Further, 

CK has the same slope and passes through C, whose coordinates we know, so it is easy to 

write the equation to the projected minor axis in the form y  =  mx  +  d  (d is xmy − ), 

and then solve equations 17.4.2 and 17.4.3 to find the coordinates of K. 

 

Now we want to extend FM, FN, CK to .K'andN',M'   For N'andM' this is done 

simply by replacing x and y by kx and ky, where k is the factor .1/1 2
e−   For K' , it is 

done by replacing x and y by )(and)( yykyxxkx −+−+ respectively. 

 

We now have five points, P, A, ,K'andN',M' whose coordinates are known and which 

are on the auxiliary ellipse.  This is enough for us to determine the equation to the 

auxiliary ellipse in the form of equation 17.4.1. A quick method of doing this is described 

in section 2.8 of Chapter 2. 

 

The slopes of the major and minor axis of the auxiliary ellipse (written in the form of 

equation 17.4.1) are given by 

 

    .
2

2tan
ba

h

−
=θ        17.4.6 

 

This equation has two solutions for θ, differing by 90
o
, the tangents of these being the 

slopes of the major and minor axes of the auxiliary ellipse.  Now that we know these 

slopes, we can write the equation to these axes in the form 

)is( xmyddmxy −+= and so we can determine where the axes cut the auxiliary 

ellipse and hence we can determine the lengths of the both axes of the auxiliary ellipse.  

 

This has been hard work so far, but we are just about to make real progress.  The major 

axis of the auxiliary ellipse is the only diameter of the auxiliary circle that has not been 

foreshortened by projection, and therefore it is equal to the diameter of the auxiliary 

circle, and hence the major axis of the auxiliary ellipse is also equal to the major axis of 

the true ellipse. 

 

Thus a has been determined. 

 

The ratio of the lengths of the minor to major axes of the auxiliary ellipse is equal to the 

amount by which the auxiliary circle has been flattened by projection.  That is, the ratio 

of the lengths of the axes is equal to .cos i   Since the lengths of the axes are essentially 

positive, we obtain only ,cos i  not cos i itself.  However, by our definition of i, it lies 

between 0
o
 and 180

o
 and is less than or greater than 90

o
 according to whether the position 
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angle of the secondary component is increasing or decreasing with time.  For example, if 

,cos
2
1=i   i is 60

o
 or 120

o
, to be distinguished by the sense of motion of the secondary 

component. 

 

The line of nodes passes through F and is parallel to the major axis of the auxiliary 

ellipse.  This indeed is the reason why the major axis of the auxiliary ellipse was 

unchanged from its original diameter of the auxiliary circle.  We therefore already know 

the slope of the line of nodes and hence we know the position angle of the first node. 

 

Thus Ω has been determined. 

 

In figure XVII.5 I have added the line of nodes, parallel to the (not drawn) major axis of 

the auxiliary ellipse.  I have used the symbols � and � for the first and second nodes, but 

we do not know (and cannot know without further information) which of these is 

ascending and which is descending. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can also determine the position angle of P but this is not yet ω, the argument of 

periastron.  Rather, it is a plane-of-sky longitude of periastron.   Let’s call the angle �FP  

λ and have a look at figure XVII.6, in which the symbol � refers, of course, to the nodal 

point, not the angle Ω. 
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Solution of the spherical triangle gives us 

 

     .sectantan iλ=ω     17.4.7 

 

Thus ω has been determined. 

 

 

We still have to determine the period  P and the time T of periastron passage, but we have 

completed the purely geometric part, and a numerical example might be in order. 

 

Let us suppose, for example, that the equation to the apparent ellipse is 

 

  .0100313182314 22 =−−−+− yxyxyx  

 

Figures XVII.4, 5 and 6 were drawn for this ellipse. 

 

I give here results for various intermediate stages of the calculation to a limited nmber of 

significant figures.  The calculation was done by computer in double precision, and you 

may not get exactly all the numbers given unless you, too, retain all significant figures 

throughout all stages of the calculation. 

 

Centre of apparent ellipse:   (+1.71399  ,   +1.95616) 

Slope of true major axis:                       1.14123  

Coordinates of P:       (−1.73121  ,   −1.97582) 

Coordinates of A:                  (+5.15919  ,   +5.88814)  
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plane of sky
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Length of FC:     2.60083 

Length of PC:     5.22780 

True eccentricity:    0.49750 

Slope of latus rectum and minor axis:          −0.09677  

Coordinates of M:      (−2.46975  ,  +0.23901)  

Coordinates of N:        (+2.46975  ,  −0.23901) 

Coordinates of K:        (−1.13310  ,  +2.23168) 

Lengthening factor k:    1.15279 

Coordinates of 'M :      (−2.84709  ,  +0.27552)  

Coordinates of N' :        (+2.84709  ,  −0.27552) 

Coordinates of K' :        (−1.56810  ,  +2.27378) 

 

Equation to auxiliary ellipse: 

 

 0100000.310000.33528.159575.165518.10 22 =−−−+− yxyxyx   

 

Slope of its major axis:   0.75619 

Lengths of semi axes:    5.66541  ,  2.47102 

True semi major axis:    5.66541   

Inclination:     '52115or'0864 oo  

Longitude of the node:   '06127o  

λ:       '4111o    

Argument of periastron:    '2125o   or  '39154o  

 

 

That completes the purely geometrical part.  It remains to determine the period P and the 

time of periastron passage T. 
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Figure XVII.7 shows the secondary component somewhat past periastron, when its true 

anomaly is v, so that its argument of latitude is ω  +  v, and its position angle is θ.  By 

solution of the spherical triangle we have (exactly as for equation 17.4.7) 

 

    ,sec
)cos(

)sin(
)tan( i

Ω−θ

Ω−θ
=+ω v    17.4.8 

 

so that we can determine the true anomaly v for a given position angle θ.  

 
[In an earlier version of these notes, equation 17.4.8 was written as .sec)tan()tan( iΩ−θ=+ω v   I am 

indebted to Rod Letchford of Wagga Wagga, NSW, Australia,  for pointing out that this can lead to 

quadrant ambiguity.  To avoid quadrant ambiguity it is necessary to preserve the signs of )sin( Ω−θ and 

)cos( Ω−θ separately. This is facilitated on many computers or calculators by means of an ATAN2 

function.  This is a useful reminder in orbit computation always to be alert for quadrant ambiguities!] 
 

From the true anomaly we can now calculate the eccentric and mean anomalies in the 

usual manner from equations 2.3.16 or 17 and 9.6.5.  So, for a given time t, we know the 

mean anomaly M.  Equation 9.6.4 is 

  

    ( )Tt
P

−
π

=
2

M .        9.6.4 

 

With M  known for two instants t, we can solve two equations of the type 9.6.4 to obtain 

P and T.  Better, of course, is to obtain M  for many (perhaps hundreds) values of t and 

hence obtain best (least squares) solutions for P and T.  To do this, a table, or graph, will 

be prepared, of M versus t.  If, during the time covered by the observations, the stars go 

through periastron, it is then important to remember not to subtract 360ºfrom M, but to 

allow M to continue to increase, so that the graph of M  versus t continues as a straight 

line (equation 9.6.4), from which P and T can be obtained. 

 

Recall that we used all of the observations (plus Kepler’s second law) to obtain the best 

apparent ellipse.  Once this has been done, the auxiliary ellipse is unique and it can be 

determined by just five points on it.  To obtain P and T, we again have to use all the 

observations to obtain optimum values. 

 

   Since the above was written, Esmat Bekir has devised a method is which he calculates 

the elements of the auxiliary ellipse explicitly in terms of the elements of the apparent 

ellipse.  His interesting method can be found, clearly explained, in  

http://dergipark.gov.tr/uploads/articlefiles/73f0/7f53/f49e/5bdc55b9b621c.pdf 
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17.5    Construction of an Ephemeris 

 

An ephemeris is a table giving the predicted separation and position angle as a function 

of time.  The position angle will be given with respect to a standard equator, such as that 

of J2000.0, whereas observations are necessarily made with respect to the equator of date. 

 

In the plane of the orbit it is easy (for those who have mastered Chapter 9) to calculate 

the true anomaly v and the separation r as a function of time, and we can calculate the 

rectangular coordinates (X , Y) (figure XVII.3) from vcosrX = and .sinvrY =   What 

we would like to do would be to calculate the plane-of-sky coordinates (x , y)  (figure 

XVII.1).   This can be done from 

 

   ),cos(),cos( YxYXxXx +=       17.5.1 

 

and   ,),cos(),cos( YyYXyXy +=       17.5.2 

 

where the direction cosines can be found either (by those who have mastered Section 3.7) 

by Eulerian rotation of axes or (by those who have mastered Section 3.5) by solution of 

appropriate spherical triangles.  (I’m sorry, rather a lot of mastery seems to be called for!) 

I make it 

 

  ,coscossinsincos),cos( ωΩ+ωΩ−= iXx       17.5.3 

 

  ,sincoscossincos),cos( ωΩ−ωΩ−= iYx      17.5.4 

 

  ωΩ+ωΩ+= cossinsincoscos),cos( iXy      17.5.5 

 

and  .sinsincoscoscos),cos( ωΩ−ωΩ+= iYy      17.5.6 

 

The (x , y) and (X , Y) coordinate systems are shown in figure XVII.8 as well as in figures 

XVII.1 and 3.    

 

The separation and predicted position angle are then found from 

 

 

    ,222 yx +=ρ       17.5.7 

 

    ,/cos ρ=θ y        17.5.8 

 

and    ./sin ρ−=θ x       17.5.9 
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17.6  Sign Conventions 

 

   It will occur to the reader that there are several ways in which the various angles 

i,,, ωΩθ  might be defined.  That is, where is the starting point for their measurement, 

and in which direction (clockwise or counterclockwise) should they be expressed? 

 

  The following are recommended, in accordance with current practice.  They have all 

been mentioned in the main text, but it is thought to be useful to gather them all together 

here, since they can be a source of difficulty. 

 

 

 

 

 

 

 

A   X-axis 

• 

y 

Ω 

ω 

P 

i 

x 

Y-axis 

FIGURE XVII.8 
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Position angle. 

 

    

 

 

 

 

 

 

 

 

 

 

 

East is towards increasing right ascension.  West  (x) is towards decreasing right 

ascension.   Measure p.a. counterclockwise from North. 

 

Your measurements will be made referring to the equinox and equator of date, and, if you 

publish your original measurements of position angle, this should be stated explicitly and 

unambiguously. Before computing an orbit, however, these should be referred to a 

standard equinox and equator (at present taken to be J2000.0), and this should be stated in 

publishing the final orbital elements.  See equation 17.1.1. 

 

In the following , it is assumed that no radial velocity data are available.  Consequently 

the sign of the inclination and which node is ascending are unknown. 

 

Inclination. 

 

     i is a positive number between 0 and 180º. 

 

     If the secondary is moving counterclockwise,  i is between 0 and 90º. 

     If the secondary is moving clockwise,  i is between 90 and 180º. 

 

 

ΩΩΩΩ    

    

                The term to be used in describing this angle is The Position Angle of the First Node.  

I.e. the node whose position angle is less than 180º. 

 

 

ωωωω    
 

      This is a positive number that goes from 0º to 360º.    It is measured from the First 

Node, in the direction of motion of the secondary.    

 

 

x  West 

y  North 

ρ 

θ 
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Further, it is very strongly mentioned, that whenever you write on this subject, whether 

in a paper, an article and a book, you always, every time, state explicitly what you mean 

by these angles, and do not assume that your reader will automatically use the same 

convention that you do.   


