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Chapter 2

Fourier Transform Spectroscopy

“A little over a year ago the scientific world was startled by the announcement
that Professor Zeeman had discovered a new effect of magnetism on light. (...) It
occurred to me at once to try this experiment by the interference method, which
is particularly adapted to the examination of just such cases as this, in which the
effect to be observed is beyond the range of the spectroscopic method. (...) The
visibility curves that were thus obtained showed that, instead of a broadening, as
was first announced by Zeeman, each of the sodium lines appeared to be double.”

- Albert A. Michelson, Light Waves and their Uses, University of
Chicago Press (1902).

This chapter outlines the theoretical background of Fourier transform spectroscopy

(FTS). A thorough grounding in FTS is key to understanding the operation of the Spec-

tral and Photometric Imaging Receiver (SPIRE; see Chapter 3) spectrometer onboard the

Herschel Space Observatory (HSO) and the Simulator for the Herschel Imaging Fourier

Transform Spectrometer (SHIFTS; see Chapter 4). The concepts introduced in this chap-

ter reappear throughout this thesis.

Section 2.1 introduces the Fourier series and the Fourier transform; Section 2.2

outlines the basic properties of Fourier transforms. With the mathematical foundation in

place, the Michelson interferometer and its contributions to spectroscopy are described in

Section 2.3. From the ideal case, Sections 2.4 and 2.5 discuss the techniques used today in

Fourier transform spectroscopy.
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2.1 The Fourier series and transform

In 1807, J. B. Joseph Fourier submitted “Sur la propagation de la Chaleur dans

les corps solides”∗ to L’Institut de France [48]. To describe heat flow, Fourier proposed

that the initial temperature distribution, f(x), of a one-dimensional solid is represented as

a infinite sum of sine and cosine terms,

f(x) =
∞∑

n=0

[ancos(nkx) + bnsin(nkx)] , (2.1)

where an and bn are the Fourier coefficients, x is the position (in units of length) and k = 2π
λ

is the angular wavenumber (in radians per unit length) for a wavelength of λ = 2L [48,49].

As derived in Champeney [50], the Fourier coefficients for f(x), periodic over the interval

[−L,L], are given by

an =
1
L

∫ L

−L
f(x)cos(nkx)dx, (2.2)

bn =
1
L

∫ L

−L
f(x)sin(nkx)dx. (2.3)

By letting L → ∞ and replacing k with 2πσ where σ is the spatial frequency or

wavenumber (in waves per unit length), the discrete Fourier coefficients, an and bn, are

replaced with a continuum of coefficients denoted, respectively, by a(σ) and b(σ). This

allows Equation 2.1 to be rewritten as two integrals,

fc(x) =
∫ ∞

−∞
a(σ)cos(2πσx)dσ, (2.4)

fs(x) =
∫ ∞

−∞
b(σ)sin(2πσx)dσ, (2.5)

where fc(x) is the inverse Fourier cosine transform of a(σ), and fs(x) is the inverse Fourier

sine transform of b(σ) [51]. Note that a(σ) contains only even terms and b(σ) only odd

terms. Employing Euler’s formula, a(σ) and b(σ) are written as a complex function, F (σ),

composed of both even and odd terms and given by

F (σ) = a(σ) − ib(σ), (2.6)

where i =
√−1 [51, 52]. Therefore, Equations 2.4 and 2.5 are generalized as a single

equation,

f(x) = F−1[F (σ)] =
∫ ∞

−∞
F (σ)ei2πσxdσ, (2.7)

∗On the propagation of heat in solid bodies
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where F−1[F (σ)] is defined as the inverse Fourier transform (or reverse Fourier transform)

of F (σ) [50,51,53]. To determine F (σ), we perform the (forward) Fourier transform,

F (σ) = F [f(x)] =
∫ ∞

−∞
f(x)e−i2πσxdx, (2.8)

where x and σ are called conjugate variables. Equations 2.7 and 2.8 are one of three

definitions of the forward and reverse Fourier transform seen in Bracewell [51] and Cham-

peney [50]. While the above definition employs reciprocal units in the spatial and spectral

domains, the other two definitions are instead defined in terms of position and angular

wavenumber. To normalize the transform, these definitions include a constant before the

integral sign; one multiplies the reverse transform by 1
2π while the other multiplies both the

forward and reverse transforms by 1√
2π

. To avoid confusion, the definitions of the forward

and reverse Fourier transforms given in Equations 2.7 and 2.8 are used exclusively in this

thesis.

As can be seen, the Fourier integrals are reversible operations: given F (σ), we

can determine f(x); and vice-versa [50]. The Fourier transform provides a simple relation-

ship between a function and its frequency components. Waveforms can be manipulated or

analyzed in either the spatial or spectral domains (i.e., as a function of x or σ, respectively).

2.2 Properties of Fourier transforms

This section outlines some important properties of Fourier transforms. The field of

study devoted to the representation of an arbitrary function by a superposition of sinusoids

and cosinusoids is called Fourier analysis [49]. Specific topics covered include symmetry

and phase, the boxcar and triangle functions, the superposition and convolution theorems,

and Parseval’s theorem.

The previous section used position, x, and wavenumber, σ, as conjugate variables

in the two domains [54]. For reasons which become clear in Section 2.3.2, the most frequently

employed conjugate pair in Fourier transform spectroscopy is x in centimetres (cm) and σ

in inverse centimetres (cm−1) [49, 55–57]. Another conjugate pair employed in this thesis

(see Sections 4.4 and 4.5, and Appendix B) is time (in seconds, or s) and frequency (in Hz),

denoted respectively by t and f . However, for the remainder of this chapter, wavenumber

and frequency are used interchangeably.

2.2.1 Symmetry

Consider an even function of unit amplitude defined over the range x = [−∞,∞]

of the form

fe(x) = cos(2πσox), (2.9)
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Figure 2.1: Fourier transform of a symmetric function. Panel (a) shows an infinite even function with a frequency

of 5 cm-1. Panels (b) and (c) show the real and imaginary components, respectively, of the Fourier transform of

Panel (a).

where σo = 5 cm−1 is the spatial frequency, as shown in Figure 2.1(a). Following the

derivation in Bracewell [51], the Fourier transform of fe(x) is

Fe(σ) = F [fe(x)] =
1
2
δ(σ ∓ σo), (2.10)

where

δ(σ − σo) =

{
1 for σ = σo

0 for σ �= σo

, (2.11)

is the Dirac Delta function or simply the delta function [49, 51, 58]. As can be seen in

Panels (b) and (c) of Figure 2.1, Fe(σ) corresponds to two real symmetric delta functions at

σ = ±5 cm−1. In fact, the Fourier transform of any symmetric function is symmetric [51].

As shown in Equations 2.7 and 2.8, the limits of the Fourier integrals are symmetric

about x = 0 cm. Therefore, the Fourier transform of any function produces information

at both positive and negative frequencies. Due to the inherent symmetry of the Fourier

transform, the unit amplitude of fe(x) in the spatial domain is split evenly between the
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Figure 2.2: Fourier transform of an asymmetric function. Panel (a) shows an infinite function composed of even

and odd terms. Panels (b) and (c) show the real and imaginary components, respectively, of the Fourier transform

of Panel (a).

two delta functions in the spectral domain. However, in practice, negative frequencies are

non-physical and are generally ignored [49].

Conversely, consider an odd function defined over the range x = [−∞,∞] of the

form

fo(x) = sin(2πσox). (2.12)

In this case, the Fourier transform of fo(x) is

Fo(σ) = F [fo(x)] = ±1
2
iδ(σ ∓ σo) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 i for σ = σo

−1
2 i for σ = −σo

0 for σ �= ±σo

. (2.13)

Contrary to F [fe(x)], the Fourier transform of a real and anti-symmetric function is imag-

inary and anti-symmetric [51]. However, similar to F [fe(x)], the unit amplitude of fo(x) is

split evenly between the two delta functions at frequencies of σ = ±σo in Fo(σ).

In the more general case, an arbitrary function is asymmetric. By Fourier decom-

position, an asymmetric real function is represented as a sum of even and odd terms [49].
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Therefore, its Fourier transform contains a real even component and an imaginary odd

component [51]. For example, consider the following real function:

foe(x) = cos
(

2πσox +
5π
6

)
. (2.14)

As can be seen in Panel (a) of Figure 2.2, this function is asymmetric about x = 0 cm. The

resultant Fourier transform, shown in Panels (b) and (c), is a combination of the previous

two cases: the even component of the waveform corresponds to symmetric delta functions

in the real part of the spectrum, and the odd component corresponds to anti-symmetric

delta functions in the imaginary part of the spectrum.

Given Figure 2.2, the real and imaginary components can be written in terms of

the magnitude and phase (denoted respectively by M and φ) [52]. On the complex unit

circle, this corresponds to converting from cartesian to polar coordinates. The relationship

between the real, Rσ, and imaginary, Iσ, components of a spectrum is given by

Mσ =
√

R2
σ + I2

σ, (2.15)

and

φσ = arctan
( Iσ

Rσ

)
. [radians] (2.16)

As can be seen in Panels (b) and (c) of Figure 2.2, the amplitude of the real and imaginary

components at σ = 5 cm−1 are
√

3
4 and 1

4 , respectively. Equation 2.16 yields φ = 5π
6 ,

identical to the phase term in Equation 2.14 that introduced the asymmetry. Using a

technique called phase correction, the phase is used to retrieve a real spectrum from an

asymmetric waveform (see Section 2.5.3) [59].

The symmetry properties of Fourier transforms are summarized in Table 2.1 [51,

56]. These properties suggest operations on even and real functions are preferable since

their Fourier transforms only require a cosine transform [51]. Fourier transform spectrom-

eters such as the Michelson interferometer (see Section 2.3) exploit this fact because their

measurements are inherently real and, for the ideal case, symmetric [55,56].

2.2.2 Transform pairs

In addition to the sine and cosine, there are other functions whose Fourier trans-

forms are frequently encountered in Fourier analysis [49, 51, 54]. This section lists two

common functions seen throughout this chapter. The first is the boxcar function, defined

by

Π(x) =

{
1 for |x| < L

0 for |x| > L
, (2.17)
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Table 2.1: Symmetry properties of Fourier transform pairs, where f(x) is any function, and F [f(x)] is the Fourier

transform of f(x).

f(x) F [f(x)]
Real Imaginary Real Imaginary
even 0 even 0
odd 0 0 odd
0 even 0 even
0 odd odd 0

asymmetric 0 even odd
0 asymmetric odd even

even odd asymmetric 0
odd even 0 asymmetric
even even even even
odd odd odd odd

and shown in Panel (a) of Figure 2.3. As shown in Bracewell [51] and James [54], the Fourier

transform of Π(x) is

F [Π(x)] =
∫ ∞

−∞
Π(x)e−i2πσxdx = 2L

sin(2πσL)
2πσL

, (2.18)

where sin(2πσL)
2πσL is commonly referred to as the sinc function, sinc(2πσL), shown in Panel (b).

Since the sinc function is frequently encountered in Fourier analysis, its properties are well

understood [51,54]. The sinc function has a full-width at half-maximum (FWHM) of 1.207
2L

and crosses zero where σ is an integer multiple of 1
2L . Located at 1.43

2L , the secondary

minimum is -21.7 % of the central maximum [51,56].

The second common function is the triangle function, defined by

Λ(x) =

{
1 − |x|

2L for |x| < 2L

0 for |x| > 2L
, (2.19)

and shown in Panel (c) of Figure 2.3. Shown in Panel (d), the Fourier transform of Λ(x) is

F [Λ(x)] =
∫ ∞

−∞
Λ(x)e−i2πσxdx = 4L2sinc2(2πσL). (2.20)

The properties of sinc2(2πσL) are similar to the sinc function. However, since sinc2(2πσL)

is positive-definite for all σ, it is the secondary maximum that occurs at 1.43
2L . Moreover, the

amplitudes of all the secondary lobes are reduced; the amplitude of the secondary maximum

is only 4.7 % of the central maximum [51,56].



16 Chapter 2: Fourier Transform Spectroscopy

-4L -2L 0 2L 4L
Position (cm)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Π
(x

)

(a)

- 
10_
2L -  

5_
2L    

5_
2L  

10_
2L

0.0

0.5

1.0

F
ou

rie
r 

tr
an

sf
or

m
 o

f Π
(x

)
(u

ni
ts

 o
f 2

L)

(b)

0
Wavenumber (cm-1)

-4L -2L 0 2L 4L
Position (cm)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Λ
(x

)

(c)

- 
10_
2L -  

5_
2L    

5_
2L  

10_
2L

0.0

0.5

1.0

F
ou

rie
r 

tr
an

sf
or

m
 o

f Λ
(x

)
(u

ni
ts

 o
f 4

L2 )

(d)

0
Wavenumber (cm-1)

Figure 2.3: Fourier transforms of the boxcar and triangle functions. Panel (a) shows a boxcar function with

its Fourier transform, a sinc function, shown in Panel (b). Panel (c) shows a triangle function with its Fourier

transform, a sinc2 function, shown in Panel (d).

2.2.3 Fourier theorems

There are a series of theorems fundamental to Fourier analysis that describe the

effect that changes to a function have on its Fourier transform. This section outlines three

important theorems employed in this thesis: superposition, convolution and Parseval. (For

additional theorems, the reader is referred to Bracewell [51], Brigham [53], Champeney [50]

and James [54].) For the remainder of this chapter, F (σ) and G(σ) are the Fourier trans-

forms of f(x) and g(x), respectively, and only positive frequencies are shown in a spectrum.

Superposition theorem

Fourier transforms obey the superposition theorem [49, 51], which is expressed

mathematically as

F [f(x) + g(x)] = F [f(x)] + F [g(x)] = F (σ) + G(σ). (2.21)
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Figure 2.4: Example of the superposition theorem. Panel (a) is the sum of two infinite cosine functions oscillating

at 4 and 5 cm-1. Panel (b) is the Fourier transform of Panel (a).

Consider two cosine functions (see Equation 2.9) oscillating at spatial frequencies of σ1 and

σ2. By employing trigonometric identities, the resultant function of the sum of these two

waveforms produces a beat pattern given by

fσ1(x) + fσ2(x) = 2cos(πx(σ1 − σ2))cos(πx(σ1 + σ2)), (2.22)

where the first cosine term is the envelope of the rapidly varying second cosine term.

Panel (a) of Figure 2.4 shows the above equation with σ1 = 5 cm−1 and σ2 = 4 cm−1.

In agreement with the above equation, the waveform oscillates nine times in a 2 cm spatial

period. Panel (b) shows the Fourier transform of Equation 2.22. As can be seen, the Fourier

transform of the sum of the two functions is simply the Fourier transform of each of the

individual functions.

Convolution theorem

The Fourier transform of the multiplication of two functions in one domain is

equivalent to convolution in the other, as given by

F−1(G(σ) · F (σ)) = f(x) ∗ g(x) =
∫ ∞

−∞
f(z)g(x − z)dz, (2.23)

where z is a dummy variable and f(x)∗g(x) denotes the convolution of f(x) and g(x) [49,51].

In effect, convolution shifts the reverse of the second function across the first function; each

point in x is the integral of the product of the overlapping regions of f(z) and g(x− z) [51].

Consider the convolution of two boxcar functions, where the reversed function is

given by Equation 2.17 and the fixed boxcar funtion, f(x), is twice as wide as g(x − z).

As shown in the upper portion of Figure 2.5, the initial overlap occurs at x = −3L. The

integrated area increases linearly to a plateau that begins at x = −L. The overlap is

constant until x = L and then decreases linearly to zero [49,56,58].
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Figure 2.5: Example of the convolution theorem. The lower portion shows a trapezoid, the result of the convo-

lution of two boxcar functions of different widths. The integration over z at each point in x (see Equation 2.23)

is shown in the upper portion, where the hatched regions indicates the overlapping area of the two boxcars and

the arrows indicate the direction of the shifting boxcar function.

As is clear from the lower portion of Figure 2.5, the convolution of two boxcar

functions of different widths is a trapezoid. In the special case where the boxcar functions

have the same width L, the convolution yields a triangle function. As indicated in the

previous section, the Fourier transform of a boxcar function is a sinc function. The product

of two sinc functions naturally yields a sinc2 function, identical to the Fourier transform

of a triangle function [51]. (Several excellent animations of convolution can be found at

http://mathworld.wolfram.com/Convolution.html.)

Parseval’s theorem

The final theorem of interest is Parseval’s theorem, which states that the integral

of the square of a function equals the integral of the square of its Fourier transform [51,53].

It is expressed mathematically as∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (σ)|2dσ. (2.24)

Parseval’s theorem is the embodiment of the conservation of energy; information is neither

created nor destroyed during a transform. For a derivation of Parseval’s theorem, the reader

is referred to Champeney [50].

2.3 The Michelson interferometer

As Section 2.2 indicated, the Fourier transform is a powerful mathematical tool

that relates any periodic waveform to its component frequencies. This section describes how

Fourier transforms are employed to determine the spectral distribution of electromagnetic

radiation.
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2.3.1 Michelson and the interference of light

Light is composed of transverse waves of electric and magnetic potentials [60].

In 1801, Thomas Young conducted his famous double-slit experiment, proving that light

waves interfere with one another [61]. Put simply, the theory of interference states that the

superposition of two rays of light of equal amplitude, frequency and phase is simply another

waveform of identical frequency and phase but with double the amplitude. This is called

constructive interference. However, if those same two rays of light are out of phase by π

radians, then when added together they cancel one another out. This is called destructive

interference [62].

The concept of interference was firmly established when Albert A. Michelson began

his studies of light in 1878 [63]. In 1881, Michelson invented his now famous interferometer

to test for the existence of the luminiferous ether [63, 64]. Although the ether experiment

returned a negative result (which had a major impact on relativity), the Michelson inter-

ferometer has since played a major role in the development of spectroscopy [57,65].

The Michelson interferometer is one example of a Fourier transform spectrometer, a

two-beam interferometer used to measure spectra [60,65]. The SPIRE imaging spectrometer

is based on another two-beam interferometer, the Mach-Zehnder (MZ) interferometer (see

Chapter 3) [5, 60]. However, the Michelson interferometer is the simplest design so our

discussion focuses on it.

2.3.2 Theory of an ideal Michelson interferometer

Figure 2.6 depicts a schematic of a Michelson interferometer. Light emitted from

the source is collimated and then strikes the beamsplitter, a reflective substrate angled 45

degrees with respect to the direction of travel of the light [64, 65]. Half of the beam is

reflected off the beamsplitter and half is transmitted. The reflected beam is reflected again

off a fixed plane mirror back to the beamsplitter. The transmitted beam is reflected off

a second plane mirror, which moves in a direction perpendicular to its plane, back to the

beamsplitter.

The two beams recombine at the beamsplitter and the reflected light is directed

down to an eyepiece, where Michelson observed the resultant intensity. By changing the

position of the movable mirror with turns of a millimetre screw, Michelson changed the

optical distance the second beam travelled [65]. Note than only half of the radiation entering

a Michelson interferometer can be measured since 50 % is transmitted back through the

beamsplitter to the source [55,66].

To understand the effect of moving the second mirror, let us examine the optical

path of the two beams of light within the interferometer. From the solution to Maxwell’s
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Figure 2.6: Schematic of a Michelson interferometer. Arrows indicate the direction of motion of light rays. The

dotted section of the moving mirror corresponds to a movement of ∆x in the position of the mirror.

equations for one-dimensional free space, the wave equation of the electric field is given by

E(x, σ) = Eo(σ)ei2π(σx−νt), [V m−1] (2.25)

where x is the position (in cm), σ is the wavenumber (in cm−1), t is the time (in s), ν is

the frequency (in Hz) and Eo(σ) is the maximum amplitude of the electric field (in volts

per metre, or Vm−1) [60].

Following a reflection from and a transmission through the beamsplitter, the two

beams are observed at the eyepiece, having travelled optical paths x1 and x2. The resultant

electric field at the detector is

Ed(x, σ) = rtEo(σ)
[
e−i2π(σx1−νt) + e−i2π(σx2−νt)

]
, [V m−1] (2.26)

where r and t are the amplitude coefficients of reflection and transmission, respectively, of

the beamsplitter [67]. The intensity, Id(x, σ), measured at the eyepiece is proportional to

the time average of the square of the measured electric field,

Id(x, σ) =
cεo

2
Ed(x, σ)E∗

d(x, σ), [W] (2.27)

where c is the speed of light and εo is the permittivity of free space (see Table A-1) [67]. For

the remainder of this chapter, the constant factor cεo
2 is ignored and the intensity measured

at the eyepiece is simply given by

Id(x, σ) ∝ Ed(x, σ)E∗
d(x, σ) = 2RTE2

o (σ) [1 + cos(2πxσ)] , [W] (2.28)
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where R = r2 is the reflectance, T = 1 − r2 is the transmittance and x = x1 − x2 is the

optical path difference (OPD) between the two beams (in cm), which depends solely on the

position of the movable mirror [49, 60]. Since x is an observable quantity, it is natural to

use wavenumber (in cm−1) as the conjugate variable in the spectral domain.

The unique position corresponding to x = 0 cm is called zero path difference (ZPD)

because both mirrors are equidistant from the beamsplitter [55]. At ZPD, both beams

of light travel the same distance so all frequencies are in phase and yield the maximum

intensity [49].

As the second mirror moves away from ZPD, the optical path distance for the

second beam of light increases. Since the light travels between the movable mirror and the

beamsplitter twice, a change of ∆x in the moving mirror’s position results in a change of

2∆x in the optical path (see Figure 2.6) [49,55,56]. The power, I(x), at the eyepiece is the

integral of all the component intensities:

I(x) =
∫ ∞

0
Id(x, σ)dσ,

∝ 2RT

[∫ ∞

0
E2

o (σ)dσ +
∫ ∞

0
E2

o (σ)cos(2πσx)dσ

]
,

=
1
2
I(0) + 2RT

∫ ∞

0
B(σ)cos(2πσx)dσ, [W] (2.29)

where E2
o (σ) is proportional to our measure of interest, the spectrum B(σ) [60]. For an

ideal interferometer, R = T = 0.5. Therefore, it can be seen by inspection that half the

maximum power is contained in the constant term above [49]. It is customary to ignore the

offset since it contains no spectral information. Instead, we focus on the modulating term,

rewritting Equation 2.29 as

I(x) =
∫ ∞

0
B(σ)cos(2πσx)dσ. [W] (2.30)

Changes in the optical path difference introduce phase shifts of cos(2πσx) into the second

beam. At a given OPD, higher frequency components experience greater phase shifts [56].

Mirroring the spectrum to include negative frequencies, using the definition B(σ) = B(−σ),

yields

I(x) =
1
2

∫ ∞

−∞
B(σ)cos(2πσx)dσ, [W] (2.31)

which is the inverse Fourier cosine transform of B(σ) (see Equation 2.4) [55].

The function I(x) is a measure of the interference of all the frequency components

of B(σ) as the OPD is varied. Therefore, I(x) is termed an interferogram [49]. By the sym-

metry requirements of Fourier transforms (see Section 2.2.1), the measured interferogram

is double-sided ; i.e., it is evenly sampled at both positive and negative optical path differ-

ences [49,56]. The spectrum, B(σ), is recovered by performing the Fourier cosine transform
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on the interferogram,

B(σ) =
∫ ∞

−∞
I(x)cos(2πσx)dx. [W] (2.32)

2.4 Sampling an interferogram

Since Michelson observed with an eyepiece, he never measured an interferogram,

only its visibility curve [57, 65]. Heinrick Rubens and Robert W. Wood measured the first

true interferogram in 1911 [68]. However, they were still unable to compute the Fourier

transform of their interferogram directly [49,57,68]. Another forty years passed before Peter

B. Fellgett published results of the first numerical Fourier transform of an interferogram [57].

The first successful use of a Fourier transform spectrometer in astronomy came in 1966

when Janine and Pierre Connes used one to measure the near-infrared (NIR) spectrum of

the atmosphere of Venus [69].

This section focuses on the basic features of an interferogram and how interfero-

grams are measured. The topics discussed include discrete sampling, the Nyquist theorem,

aliasing, natural apodization, instrumental line shape and broadband spectra. The recovery

of a spectrum from an interferogram is covered in Section 2.5.

2.4.1 Discrete sampling

In practice, it is not possible to sample a continuous interferogram. Instead, in-

terferograms are usually sampled at equal intervals of optical path difference [56]. Math-

ematically, this is equivalent to multiplying the interferogram by the Shah function given

by

X(x) =
∞∑

n=−∞
δ(x − n∆x), (2.33)

where ∆x is the sampling interval (in cm).

As a consequence of discrete sampling, there is no guarantee that the position of

zero path difference is measured [49]. Figure 2.7 illustrates this problem for an infinite

cosine wave with a frequency of σo = 3 cm−1 sampled at ∆x = 0.1 cm (as denoted by the

red circles). As can be seen, the sampled interferogram is asymmetric, such that its Fourier

transform cannot be computed using the Fourier cosine transform (see Section 2.5.1).

2.4.2 Nyquist sampling theorem

Discrete sampling also sets limits on the spectral information recoverable from an

interferogram [49, 70]. To sample a spectrum without any loss of information, the Nyquist
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Figure 2.7: Example of a discretely sampled cosine wave. The solid line denotes a infinite cosine wave with a

frequency of σo = 3 cm-1 sampled every 0.1 cm, where the red circles represent the samples.

criteria states the sampling interval, ∆x, must be less than or equal to the inverse of twice

the bandwidth of the spectrum:

∆x ≤ 1
2(σN − σL)

, [cm] (2.34)

where σN is the maximum wavenumber and σL is the minimum wavenumber of the spec-

trum (both in cm−1) [49, 56, 70]. The maximum wavenumber, σN , is called the Nyquist

frequency [55]. In practice, the lower bound, σL, is taken as a null term and the above

equation is simply written as

∆x ≤ 1
2σN

. [cm] (2.35)

2.4.3 Aliasing

If the maximum frequency in the spectrum is not sampled twice per oscillation

period (i.e., the Nyquist criteria is not satisfied), the interferogram is aliased. Informa-

tion beyond the Nyquist frequency is folded into the interferogram at a lower frequency

location [55, 56]. Consider a spectrum with a frequency component located at σo. The

corresponding interferogram is sampled such that σo < σN . If the spectrum also contains

information beyond the Nyquist frequency, spectral features located at σ = 2NσN ± σo,

where N is an integer, are shifted to a frequency of σo [56].

Figure 2.8 is a graphical demonstration of this phenomenon. For an interferogram

sampled every 0.1 cm (as denoted by the red circles), the corresponding Nyquist frequency is

5 cm−1 (see Equation 2.35). The spectrum has two frequency components at 2 and 12 cm−1,

represented by the dashed and solid lines, respectively. As can be seen, the amplitudes of

the cosine functions are indistinguishable when sampled every 0.1 cm [55].
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Figure 2.8: Example of aliasing. The solid line corresponds to a cosine function with a frequency of 12 cm-1;

the dotted line corresponds to a cosine function with a frequency of 2 cm-1; the red circles represent the 0.1 cm

sampling of the waveforms.

2.4.4 Natural apodization

The finite entrance aperture of a Fourier transform spectrometer produces an ef-

fect termed natural apodization [49]. In an ideal interferometer, an infinitesimal entrance

aperture ensures the resultant interference is produced by two plane waves moving in the

same direction. However, to increase the light-collecting power, the entrance aperture of a

Fourier transform spectrometer has a finite size [49]. From geometric optics, radiation exit-

ing the aperture at different angles travels different optical paths prior to detection [67,71].

It can be shown that the optical path difference of an off-axis beam is xcos(α′), where α′ is

the half-cone angle between the off- and on-axis beams (in radians) [66]. To determine the

interference fringe intensity at a given OPD, we integrate over the beam size,

I(x) =
∫ Ω

0
cos[2πσxcos(α′)]dΩ′, [W] (2.36)

where dΩ′ is an element of solid angle (in steradians, or sr) and Ω is the solid angle of the

beam, defined as

Ω = πα2, [sr] (2.37)

where α is the maximum value of α′. Using the small angle identity (cos(α) ∼ 1 − α2

2 for

small α) and the above equation, Equation 2.36 yields

I(x) = Ωsinc
(

σxΩ
2π

)
cos
(

2πσx

[
1 − Ω

4π

])
, [W] (2.38)

as shown in Davis, Abrams & Brault [49].

Two consequences are evident from the above equation. First, the optical path

difference grid is shorter for off-axis beams [55]. However, the scale change is generally

small and can be ignored (see Section 3.6.2) [49]. The second effect is the modulation of
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Figure 2.9: Example of finite path difference. Panel (a) shows a cosine waveform with a frequency of 10 cm-1

measured over a finite optical path difference from -0.5 to 0.5 cm. Panel (b) is the Fourier transform of the

waveform, a sinc function centered at 10 cm-1.

the interferogram by a sinc function. From Sections 2.2.2 and 2.2.3, this is equivalent to

the convolution of spectral features by a boxcar function of width Ωσ
2π . If the aperture of

the interferometer is increased such that the width of the boxcar function is larger than the

spectral resolution, ∆σ, then the linear independence of the spectral features is lost [49,72].

This fixes an upper limit on the resolving power, R, of the instrument, known as the Jaquinot

criteria and given by

R ≤ 2π
Ω

, (2.39)

where R = σ
∆σ (see Section 1.2) [49, 57]. The Jaquinot criteria is evaluated for the SPIRE

spectrometer in Section 3.6.2.

2.4.5 Instrumental line shape

Another instrumental effect to consider is the finite path difference, which intro-

duces the instrumental line shape (ILS) of a Fourier transform spectrometer. The ILS of

any spectrometer defines the shape of a spectral line given a monochromatic input. An

ideal interferometer has an infinite optical path difference. In such a case, a single emission

line of unit strength oscillating at a frequency of σo has a corresponding interferogram of

I(x) = cos(2πσox) defined over x = [−∞,∞] (see Sections 2.2.1 and 2.3.2) [49].

However, practical limitations dictate that interferograms are only measured out to

a finite optical path difference [49,55,56]. Mathematically, this is equivalent to multiplying

I(x) by a boxcar function (see Equation 2.17), where L is the maximum OPD. As per

Section 2.2.3, the spectrum is then convolved by a sinc function [51].

Panel (a) of Figure 2.9 shows a truncated interferogram where L = 0.5 cm and

σo = 10 cm−1. In Panel (b), the corresponding spectrum clearly shows a sinc function

centered at σ = σo. This sinc profile determines the spectral resolution (see Section 2.5.1)
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Figure 2.10: Example of a broadened line profile. Panel (a) shows a broadband spectrum given by Equation 2.40

and Panel (b) is its Fourier transform.

and introduces troublesome secondary lobes (see Section 2.5.2), sometimes referred to as

ringing [49, 56].

2.4.6 Broadband spectrum

While the finite path difference defines the instrumental line shape for a monochro-

matic input, spectra are rarely composed of infinitely narrow emission (or absorption) fea-

tures. In reality, light is emitted over a continuum of frequencies [15]. An interferogram

composed of broadband radiation is noticeably different from one due only to a monochro-

matic source.

Consider the gaussian emission feature shown in Panel (a) of Figure 2.10 and given

by

B(σ) = e−(σ−σo)2/2µ2
, [W] (2.40)

where σo = 10 cm−1 is the center of the line and µ = 1 cm−1 is the standard deviation.

The FWHM of a gaussian function is 2.35µ. The corresponding interferogram is shown in

Panel (b). Similar to Panel (a) of Figure 2.9, the peaks of the oscillations are spaced 0.1 cm

apart. But unlike the interferogram of the narrow line, the envelope of the broadband

spectrum decays with OPD [49]. Furthermore, the secondary lobes seen in Panel (b) of

Figure 2.9 are not present in broadband spectral features; ringing is only evident when the

width of a spectral feature is on the order of a resolution element [49].

2.5 Recovering a spectrum

By definition, a spectrum is real [49]. Section 2.4 unfortunately demonstrated that

while a measured interferogram is real, it is also discretely sampled, finite and asymmetric.
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This section describes the basic techniques employed to recover a spectrum and account for

the instrumental effects introduced by the interferometer.

2.5.1 The discrete Fourier transform

Given a discretely sampled asymmetric interferogram, the spectrum cannot be

computed using the continuous Fourier cosine transform (as was suggested in Section 2.3.2).

Instead, the spectrum is computed using the complex form of the discrete Fourier transform

(DFT) [49,55,56]. Using the DFT, the discretely sampled spectrum is given by

B(σj) =
N−1∑
j=0

I(xj)e−2πiσjxj/N , [W] (2.41)

where N is the number of elements in the interferogram (and the spectrum), and I(xj) is the

interferogram (in watts, or W) sampled at discrete optical path differences, xj, separated

by a sampling interval of ∆x (in cm). Each element in B(σj) is linearly independent of

every other element [56]. To determine the corresponding σj values, we define the spectal

resolution as

∆σ =
σN

N
, [cm−1] (2.42)

where σN is the Nyquist frequency introduced in Section 2.4.2 (in cm−1). Combining the

above equation with a complementary definition of the sampling interval, ∆x = L
N , and

Equation 2.35, the spectral resolution is written as

∆σ =
1

2L
, [cm−1] (2.43)

where L is the maximum OPD (in cm) [55,56].

The instrumental line shape further modifies the spectral resolution [56]. Consider

once again a single emission line of unit strength oscillating at a frequency of σo. Given the

above equation, its full-width at half-maximum is one spectral resolution element, ∆σ [55].

Because of the finite path difference and finite entrance aperture of a Fourier transform

spectrometer, the emission line is convolved by a boxcar function of width Ωσo
2π (see Sec-

tion 2.4.4) and a sinc function of FWHM ∼ 1.207
2L (see Section 2.4.5) [49]. In a well-designed

Fourier transform spectrometer, the sinc profile dominates and the minimum resolvable

element is therefore

∆σ =
1.207
2L

. [cm−1] (2.44)

It is important to note that Fourier transforms are rarely calculated by the DFT

today [49,53]. Using the DFT, the computation of a N -point Fourier transform requires on

the order of N2 operations [53,73]. This computational limitation led to the 1965 develop-

ment of the fast Fourier transform (FFT) by James W. Cooley and John W. Tukey [73].
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Using factorization to eliminate repetitive multiplications, the FFT algorithm reduces the

number of operations to, in the best case, N log2N [53,73]. In this thesis, all Fourier trans-

forms were computed using the fast Fourier transform. For a complete treatment of the

FFT algorithm, the reader is referred to Brigham [53].

2.5.2 Apodization

Another problem introduced by the ILS is ringing in the spectrum [49]. As can be

seen in Panel (b) of Figure 2.9, the broadened emission line has symmetric side lobes due

to the cutoff of the interferogram at x = ±0.5 cm, as shown in Panel (a). These side lobes

may be mistaken as spectral lines, or may mask real spectral features [49,55].

Apodization is a mathematical filtering technique used to reduce the amplitude of

these secondary lobes [55]. An interferogram is apodized by multiplying it by an apodizing

function, which is equivalent to convolving the spectrum by the Fourier transform of the

apodization function [55]. A correctly chosen apodizing function smooths the edge discon-

tinuities in the interferogram, which in turn minimizes the side lobes in the spectrum [49].

The cost associated with apodization is a reduction in the spectral resolution, as was seen

with the ILS (see Section 2.5.1) [55].

Various apodizing functions are currently employed in FTS, such as the triangle,

Norton-Beer and Blackman-Harris functions [56, 74–76]. Margaret Tahic recently deter-

mined ten optimal apodizing functions that reduce secondary lobes with a minimum loss in

spectral resolution [74,77].

2.5.3 Phase correction

As indicated at the beginning of Section 2.5, a spectrum is an observable quan-

tity and therefore real. Measured interferograms are generally asymmetric such that their

Fourier transforms are complex (see Section 2.4.1). Phase correction modifies an asymmetric

interferogram to produce a real spectrum [56,59].

Consider a moving stage with a scan length of 2L. Given a double-sided inter-

ferogram measured from −L to L, the magnitude of the complex spectrum is computed

by Equation 2.15. The magnitude contains the same information as the real component of

the spectrum if the interferogram were symmetric [56]. However, scanning from −L to L

limits the spectral resolution to 1.207
2L (see Equation 2.44). By employing phase correction,

the maximum OPD is greater, thereby increasing the spectral resolution [56]. The Forman

method, explained below, utilizes a single-sided interferogram (i.e., an interferogram not

sampled to equal OPDs on either side of ZPD) to correct for phase errors [56,59].

Figure 2.11 is a graphical representation of the Forman method for a linear phase
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Figure 2.11: Phase correction by the Forman method. Panel (a) shows an asymmetric single-sided interferogram

of a model spectrum of atmospheric transmission [78]. The blue box marked “1” denotes the double-sided

component. Panel (b) shows the interferogram around ZPD. Panel (c) shows the Fourier transform of the

double-sided interferogram. From the phase in Panel (d), the phase correction function is calculated in Panel (e).

Panels (f) and (g) show the phase corrected interferogram. The spectrum of the phase-corrected interferogram

is shown in Panel (h).
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error. Panel (a) shows a single-sided interferogram of a model spectrum of atmospheric

transmission [78]. As indicated by the blue box marked “1”, a double-sided interferogram of

L = 2 cm is extracted; Panel (b) shows the double-sided interferogram around ZPD where

the asymmetry is clearly visible. The double-sided interferogram is Fourier transformed

to yield the real and imaginary components, as shown in black and red, respectively, in

Panel (c). The phase, shown in Panel (d), is determined using Equation 2.16. From the

phase, φ, the phase correction function (PCF) is given by

PCF = F−1[e−iφ] =
∫ ∞

−∞
e−iφei2πσxdσ. (2.45)

The PCF, shown in Panel (e), is convolved with the single-sided interferogram. This con-

volution shifts information from the imaginary domain to the real, leaving only noise in the

imaginary. As can be seen in Panel (f), the asymmetric interferogram from Panel (b) is

now symmetric. Finally, the double-sided component is dropped and the interferogram is

mirrored at negative positions, as shown in Panel (g). The spectrum of the phase-corrected

interferogram contains only real elements, as shown in Panel (h) [59].

Using phase correction, only a short double-sided component is required in an

interferogram. The remainder of the mechanical scan length is used for high resolution

spectroscopy, thereby increasing the resolving power of the instrument (see Equation 2.44).

Note that the phase correction shown in Figure 2.11 is for a linear phase error due to a

sampling error (see Section 2.4.1). Other sources of phase error (such as electronics and

optics) introduce higher-order phase errors (see Sections 3.7, 4.9, 5.7, 6.3 and 6.4). For an

in-depth discussion of phase correction, the reader is directed to Spencer [79].

2.5.4 Zero filling

The last processing technique of note is zero filling [49, 56, 80]. As indicated in

Section 2.5.1, each independent element in a discrete spectrum is 1.207
2L cm−1 away from

its nearest neighbours [49]. However, there are situations where a narrower wavenumber

spacing is advantageous or even necessary. (see Sections 4.4 and 4.5) [49, 56]. Zero filling

is a computationally efficient technique of interpolating a spectrum onto a finer spectral

resolution. [56,80].

To zero fill an interferogram, new elements of value zero are added to the end of

an interferogram. Without adding any new information, zero filling increases the maximum

path length of the interferogram. By Equation 2.43, a longer path length corresponds to

a finer wavenumber grid [55]. Note that the Nyquist frequency of the spectrum remains

the same because zero filling does not change the sampling interval, ∆x, of the interfero-

gram [49]. Zero filling is the preferred interpolation technique in FTS because it preserves

the sinc function instrumental line shape of the Fourier transform spectrometer [49,72].
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2.6 Summary

Chapter 2 provided a basic overview of Fourier transform spectroscopy. The math-

ematics underlying Fourier transforms (see Sections 2.1 and 2.2) were introduced to under-

stand the instrumental effects present in an interferogram (see Section 2.4) measured by

an ideal Michelson interferometer (see Section 2.3). Section 2.5 outlined the significant

post-processing needed to recover a spectrum from a measured interferogram.

Supplemental topics in FTS are introduced in later chapters as needed. For a

more in-depth discussion of Fourier transforms, the reader is directed to Bracewell [51];

Brigham [53]; Champeney [50]; James [54]; and Walker [58]. For texts specifically covering

FTS, the reader is directed to Bell [55]; Davis, Abrams & Brault [49]; and Griffiths & de

Haseth [56].

With this background in place, Chapter 3 examines the Fourier transform spec-

trometer used in the SPIRE imaging spectrometer.
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Chapter 2

Fourier Transform Spectroscopy

and FTS Data Processing

2.1 Overview

Fourier transform spectroscopy (FTS) has gained an appreciable following in as-

tronomy as a spectroscopic technique to maximize input flux utilization with broad spectral

coverage and variable spectral resolution[27]. This chapter gives an overview of Fourier

transform spectroscopy and its underlying mathematical principles. Fourier series and in-

tegrals are introduced. A description of a classical Michelson interferometer is included.

The chief advantages of FTS are reviewed including the Jacquinot and Fellgett advantages.

FTS limitations such as noise, sampling, and natural apodization are also discussed.
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2.2 Brief history

A technique for analyzing periodic functions was developed by Jean Baptiste

Joseph, Baron de Fourier[28, 29] (1768-1830), which is now known as Fourier’s Theorem

[30]. Fourier’s theorem was well ahead of its time and it was not until much later that it

became appreciated as a powerful analytical tool. In fact, Fourier had difficulty getting his

results published [31, p. 187].

Fourier transform interferometry was initiated in 1880 when Dr. Albert A. Michel-

son invented the interferometer[32, 33, 34] and realized the basic concepts of Fourier trans-

form spectroscopy[35, 36], although it was not exploited due to the lack of computational

power as well as extremely poor detector sensitivity at the time[37, 38, 39]. Michelson

invented a mechanical analog computer (called a harmonic analyzer[40]) capable of per-

forming Fourier transforms of about 80 data points, but this was not extensively used for

Fourier transform spectroscopy. Michelson measured ‘visibility curves’[41] with his eye and

made crude estimates of the spectrum. The Michelson interferometer is described later in

section 2.6 of this chapter.

The first interferogram (see section 2.6) was recorded in 1911 by Rubens and

Wood[42] where a microradiometer was used to record the signal. The Fourier transform

of the interferogram was not calculated, but rather the spectrum was estimated and the

interferogram of the estimated spectrum was compared to the measured interferogram.

Fellgett was the first to apply the Fourier transform to interferograms numerically in 1958

and was also the first to recognize the multiplex advantage of FTS spectrometers (see section

2.9)[43]. In 1960, Jaquinot was the first to realize the throughput advantage of an FTS over
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other spectrometers (see section 2.8)[44]. The first application of FTS to astronomy was

published in 1969 by Janine & Pierre Connes[45]. An important development in analysis of

FTS data was the fast Fourier transform (FFT) algorithm, developed by Cooley and Tukey

in 1965[2], which was introduced to Fourier spectroscopy by Forman[46] in 1966.

2.3 Fourier series

Fourier’s theorem states that a periodic function, f(z), of period Zo, can be ex-

pressed as a series of harmonic functions whose periods are integral submultiples of Zo (i.e.

Zo, Zo/2, Zo/3, etc.). The mathematical form of the Fourier Series representation is given

by:

f(z) =
ao

2
+

∞∑
n=1

(an cos(nωoz) + bn sin(nωoz)), (2.1)

where

ωo =
2π
Zo
, (2.2)

is the fundamental frequency and the functions cos(nωoz), and sin(nωoz) form a set of

mutually orthogonal basis vectors. The constants ao, an, and bn are determined using the

following relations (see appendix A for further details):

ao =
2
Zo

∫ z1+Zo

z1

f(z)dz, (2.3)

an =
2
Zo

∫ z1+Zo

z1

f(z) cos(nωoz)dz n = 1, 2, 3, ... , (2.4)

and,

bn =
2
Zo

∫ z1+Zo

z1

f(z) sin(nωoz)dz n = 1, 2, 3, ... . (2.5)
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By introducing negative values of n into equation 2.1 and expressing it in exponential form

(see appendix A for further detail), the expression becomes:

f(z) =
∞∑

n=−∞
dne

inωoz, (2.6)

where

dn =
1
Zo

∫ z1+Zo

z1

f(z)e−inωozdz. (2.7)

The amplitudes of the spectral components are split between positive frequencies (positive

n), and negative frequencies (negative n).

2.3.1 Dirichlet conditions

Functions must adhere to certain conditions in order for the Fourier series to exist

(weak Dirichlet condition) and be convergent (strong Dirichlet conditions). These conditions

are called the Dirichlet conditions[47, 48]. The weak Dirichlet condition states that in order

for a function, f(z), to have a Fourier series:

• f(z) must be absolutely integrable over one period,

i.e.
∫

Zo

|f(z)|dz <∞. (2.8)

If a function f(z) satisfies the weak Dirichlet condition, the existence of a Fourier series

is guaranteed, but the series may not converge at every point. Similarly, if a function

has an infinite number of maxima or minima in one period, then the function contains

an appreciable number of components of frequencies approaching infinity. Thus, for a

convergent Fourier series, in addition to the weak Dirichlet condition, the strong conditions



2.4. FOURIER INTEGRALS 18

must be met. The strong Dirichlet conditions state that, in order for a function to have a

convergent Fourier series:

• f(z) must have a finite number of extrema in one period,

• f(z) must have a finite number of finite discontinuities in one period.

Any periodic waveform that can be generated in the laboratory satisfies strong Dirichlet

conditions, and hence possesses a convergent Fourier series.

2.4 Fourier integrals

As the limits of the Fourier series extend closer to infinity, and the spacing be-

tween harmonic frequencies decreases, the Fourier series representation (equation 2.6) can

be replaced by the Fourier integral representation as follows:

f(z) =
∫ ∞

σ=−∞
F (σ)ei2πσzdσ, (2.9)

where the expression is known as the inverse complex Fourier transform[49, 50]. In this

case, optical path difference (OPD), i.e. z (cm), and wavenumber, σ (cm−1), are used as

reciprocal Fourier transform variables. Another common Fourier transform pair of variables

is time (t), measured in seconds, and frequency (ν), measured in Hz. The term F (σ) is

given by

F (σ) =
∫ +∞

−∞
f(z)e−i2πσzdz, (2.10)
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and is known as the forward complex Fourier transform. The complex Fourier transform

can be expressed in terms of sine and cosine transforms as follows:

f(z) =
∫ ∞

σ=−∞
F (σ)ei2πσzdσ

=
∫ +∞

−∞

a(σ)
2

cos(2πσz)dσ +
∫ +∞

−∞

−i2b(σ)
2

sin(2πσz)dσ

=
∫ +∞

−∞

a(σ)
2

cos(2πσz)dσ +
∫ +∞

−∞

b(σ)
2

sin(2πσz)dσ,

(2.11)

where

F (σ) =
a(σ)− ib(σ)

2
, (2.12)

and the Fourier coefficients, a(σ) and b(σ), are given by:

a(σ) = 2
∫ +∞

−∞
f(z) cos(2πσz)dz, (2.13)

and

b(σ) = 2
∫ +∞

−∞
f(z) sin(2πσz)dz. (2.14)

Inspection of equations 2.13 and 2.14 shows that under certain symmetry conditions these

coefficients are trivial. For example when the function f(z) is even, b(σ) = 0 for all σ and

its Fourier transform will contain only cosine terms, which are themselves even functions.

In the same way, when the function f(z) is odd, a(σ) = 0 for all σ, and its Fourier transform

will contain only sine functions, which are odd functions. Equations 2.9 and 2.10 are referred

to as Fourier transform pairs [50].

2.5 Parseval’s theorem

Parseval’s theorem[28, 51], as applied to Fourier series, states that the energy in

a finite signal (or energy per period for a periodic signal, or power for an infinite signal) is
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the same when calculated in either reciprocal Fourier domain (e.g. time and frequency, or

OPD and wavenumber). The signal energy, Ef , for a signal f(z) (finite) is defined as:

Ef =
∫ +∞

−∞
|f(z)|2dz =

∫ +∞

−∞
|F (σ)|2dσ. (2.15)

The energy of the signal f(z) results from energies contributed by all of the spectral com-

ponents of the signal, F (σ). The total signal energy is the area under |F (σ)|2 or |f(z)|2

from −∞ to +∞. Consider a small band ∆σ(σo) (where ∆σ → 0), centred at frequency

σo. The energy ∆Ef of the spectral component in this band is the area of |F (σ)|2 under

the band ∆σ:

∆Ef (σo) = |F (σo)|2∆σ. (2.16)

The total signal energy is the sum of all such energy bands in the spectrum. Therefore,

|F (σ)|2 is the energy spectral density, that is energy per unit bandwidth; consequently,

F (σ) is the signal spectral density, that is signal per root unit bandwidth.

2.6 The Michelson interferometer

The simplest form of FTS is a Michelson interferometer[30, 38, 52], as is shown

in figure 2.1. The Michelson interferometer operates on the principle of amplitude division

and interference of light. The path that light travels through a Michelson interferometer is

summarized as follows (see figure 2.1):

1. Light from a source enters the interferometer (and is collimated by a lens or

mirror if required) resulting in a plane wave.
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2. The resulting plane wave is then split (ideally into two equal amplitude waves)

by the beamsplitter.

3. These waves travel and reflect off of the FTS mirrors (one fixed (3a) and one

movable (3b)) and are directed back on themselves towards the beamsplitter.

4. The reflected beams are recombined at the beamsplitter, where two resultant

beams are formed, one traveling back to the source and the other one to the

detector.

5. The optical detector records the interference of the combined beams of light,

resulting in an intensity variation that depends on the phase difference between

the recombined beams.

Interference is accomplished by the light in each path of the interferometer travel-

ing a different number of cycles due to the OPD between the two paths. Different amounts

of optical path traveled correspond to different phases upon recombination, and therefore

different levels of interference as the OPD changes. When the OPD is zero, all frequency

components exhibit zero phase difference and constructive interference occurs simultane-

ously for all wavelengths; this position of the FTS moving mirror is referred to as the

position of zero path difference (ZPD).

The variation of optical path difference by the motion of the moving mirror from

one limit, through the point of ZPD, to the other limit constitutes a scan (e.g. −L →

ZPD → +L). The optical signal recorded by the detector for the duration of a scan is

called an interferogram.
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4

Figure 2.1: Diagram of a classical Michelson FTS[30].
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All FTS interferometers have two input ports and two output ports. Each of the

two ports on the Michelson interferometer is doubly occupied by both an input and an

output port.

The relationship between the interferogram and spectrum is most easily explained

using a monochromatic source; the extension to general spectral sources is straightforward.

2.6.1 Monochromatic sources

Consider a monochromatic beam of frequency σo entering the interferometer. The

input beam is divided in two by the beamsplitter. The electric fields describing these two

beams, starting in phase at the point just prior to the beamsplitter, can be written as:

E1(z1) = E0e
iφrmrbt

′e−i2πσoz1

E2(z2) = E0e
iφrmrbt

′e−i2πσoz2 ,

(2.17)

where E0 is the amplitude of the incident electromagnetic wave of angular frequency

ω = 2πσo, φ is the phase of the monochromatic wave at the beamsplitter, rm is the am-

plitude reflection coefficient of each mirror, rb is the amplitude reflection coefficient of the

beamsplitter, t′ is the amplitude transmission coefficient of the beamsplitter, and z1 and z2

are the lengths of the optical paths traveled by the two beams, respectively. The total elec-

tric field at the detector is given by adding the two individual electric fields from equation

2.17

ET = E1 + E2 = E0e
iφrmrbt

′(e−i2πσoz1 + e−i2πσoz2). (2.18)

The interferometer detector measures optical intensity rather than electric field. The total

intensity measured at the detector is defined as the square of the magnitude of the total
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electric field[38] and is given as follows:

I(z1 − z2) = |ET |2 = 2E2
0RmRbT (1 + cos(2πσo(z1 − z2))), (2.19)

where Rm = r2m is the reflectance of the mirrors, Rb = r2b is the reflectance of the beam-

splitter, and T = t′2 is the transmittance of the beamsplitter. In the case of an ideal

interferometer, the beamsplitter reflects and transmits 50 % of the incident light and the

interferogram can be expressed as:

I0(z) ∝ B(σ)(1 + cos(2πσoz)), (2.20)

where z is the OPD which was expressed as z1 − z2 in equation 2.19, B(σ) is the spectrum

(E2
0(σ) ∝ B(σ)), and σo is the frequency in wavenumbers (cm−1) of the monochromatic

source. The interferogram is seen to be composed of a constant (DC) term and a modulation

term, which is given by the cosine function. In the monocromatic example, the spectrum

B(σ) is only nonzero at frequencies ±σo and is zero elsewhere.

2.6.2 Polychromatic/broad sources

When the spectral source contains more than one frequency, the resultant inter-

ferogram is the superposition of the interferograms for each frequency, i.e.

I0(z) ∝
∫ +∞

−∞
B(σ)(1 + cos(2πσz))dσ

∝
∫ +∞

−∞
B(σ)dσ +

∫ +∞

−∞
B(σ) cos(2πσz)dσ.

(2.21)

It is customary to neglect the constant (
∫ +∞
−∞ B(σ)dσ) component and express the interfer-

ogram as:

I(z) ∝
∫ +∞

−∞
B(σ) cos(2πσz)dσ. (2.22)
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This is the cosine Fourier transform of the source spectrum B(σ). The spectrum can be

recovered by the inverse cosine Fourier transform of the interferogram:

B(σ) ∝
∫ +∞

−∞
I(z) cos(2πσz)dz. (2.23)

As discussed earlier, when the inverse cosine Fourier transform of an interferogram is taken,

in addition to the positive frequency spectrum B(σ), the negative frequency spectrum

B(−σ) is produced.

The interferogram, I(z), and spectrum, B(σ), are Fourier transform pairs. B(σ)

and I(z) are ideally real valued, allowing the interferogram and spectrum to be related

using the cosine Fourier transform:

I(z) = 2
∫ +∞

0
B(σ)cos(2πσz)dσ, (2.24)

and

B(σ) = 2
∫ +∞

0
I(z)cos(2πσz)dz. (2.25)

B(σ) is the spectrum formulated as a function of wavenumber, and I(z) is the interferogram

as a function of OPD. The even symmetry of I(z) and the extension of B(σ) to include

negative frequencies (B(−σ) = B(σ)), allows the 2
∫ +∞

0
integration limit on the cosine

Fourier transforms in equations 2.24 and 2.25 to be interchangeable with the integration

limit of
∫ +∞

−∞
:

I(z) =
∫ +∞

−∞
B(σ)cos(2πσz)dσ, (2.26)

and

B(σ) =
∫ +∞

−∞
I(z)cos(2πσz)dz. (2.27)
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More generally, the interferogram and spectrum may be expressed using complex Fourier

transforms[37]. The inverse complex Fourier transform is expressed as:

I(z) =
∫ +∞

−∞
B(σ)e+i2πσzdσ, (2.28)

and the forward complex Fourier transform is expressed as:

B(σ) =
∫ +∞

−∞
I(z)e−i2πσzdz. (2.29)

The complex Fourier transforms shown in equations 2.28 and 2.29 can be separated

into sine and cosine Fourier transforms. The inverse transform is separated as

I(z) =
∫ +∞

−∞
B(σ)e+i2πσzdσ

=
∫ +∞

−∞
B(σ)cos(2πσz)dσ +i

∫ +∞

−∞
B(σ)sin(2πσz)dσ,

(2.30)

and the forward transform is separated as

B(σ) =
∫ +∞

−∞
I(z)e−i2πσzdz

=
∫ +∞

−∞
I(z)cos(2πσz)dz −i

∫ +∞

−∞
I(z)sin(2πσz)dz.

(2.31)

The even symmetry of B(σ) can be exploited to express the interferogram as a cosine Fourier

transform:

I(z) =
∫ +∞

−∞
B(σ)cos(2πσz)dσ +0

= 2
∫ +∞

0
B(σ)cos(2πσz)dσ.

(2.32)

In the non-ideal (asymmetric) case the cosine (equation 2.25) and complex (equa-

tion 2.29) Fourier transforms are not equivalent. If uncorrected, the interferogram asymme-

tries lead to the introduction of phase errors in the spectrum. Phase correction is needed

to re-symmetrize the interferogram and recover the correct spectrum. Phase correction will

be discussed in detail in chapter 3.
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2.7 FTS observing modes

There are two modes to record interferograms using an interferometer: step and

integrate, and rapid-scan. The step and integrate mode involves stepping precise amounts

of OPD and waiting for a prescribed period of time for the optical detector to integrate

signal. Step and integrate mode requires some form of signal modulation such as a chopper

combined with a lock-in amplifier to separate the signal from the DC/low frequency noise.

Improvements in signal-to-noise ratio (S/N) are obtained through increasing the integration

time per step.

Alternatively, rapid-scan mode, developed by Mertz[53, 54], involves moving the

FTS translation stage at constant velocity and sampling both the optical signal and stage

position in uniform increments of OPD. The mirror velocity can be selected such that the

interferogram fringes provide signal modulation[37]. The ac modulated signal can be pro-

cessed for spectral filtering and electronic noise reduction before the spectrum is computed.

S/N improvements are found through repeating scans and averaging either interferograms

or spectra, rather than slowing down the mirror velocity which would reduce the fringe

modulation.

For a Michelson interferometer in rapid-scan mode, the OPD, z, as a function of

time, t, and optical speed, v, is given by:

z = vt. (2.33)

Equation 2.20 reveals that the angular frequency relating to any particular spectral contri-

bution to the interferogram, i.e. σo, is derived from the term cos(ωz) = cos(2πσoz). Since

the mirror is moving in time, the electrical detector signal modulation is observed as a func-



2.8. THE JACQUINOT ADVANTAGE 28

tion of time rather than position. Thus, the observed interferogram electrical oscillation

frequency will be related to both the moving mirror velocity and the maximum spectral fre-

quency (see equation 2.43). In the rapid scan mode an external source of signal modulation

(e.g. a chopper) is not required, therefore the entire signal is exposed to the detector at all

times. Thus, for a given scan time, T , the detector is exposed to the interference signal for

time T in rapid scan mode while the detector is only exposed to the interference signal for

a time
T

2
in step-and-integrate mode. Rapid-scanning measurements are more resilient to

source fluctuations than step-and-integrate measurements as individual interferograms are

recorded in a short time interval. Individual interferograms deemed unacceptable (e.g. a

scan encountering a cosmic ray event) can be discarded without affecting the remainder of

the measurement, whereas a corrupted integration step in step and integrate data collection

affects the entire measured spectrum.

2.8 The Jacquinot advantage

The throughput of an FTS is defined as the product of the area of the input light

beam A (m2) and the solid angle Ω (sr) contained within the beam; this quantity is also

known as the étendue or light-grasp. The controlling factor for the throughput is usually

the most expensive component of the spectrometer; in the case of an FTS this is typically

the beamsplitter. All interferometers possessing circular symmetry (eg. FTS or Fabry Perot

interferometers) have significantly higher throughput or optical efficiency, compared with

dispersive spectrometers such as grating spectrometers, where the real component of the

throughput is determined by the narrow entrance and exit slits. The high throughput of
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the FTS is known as the Jacquinot advantage[44]. As will be shown in section 2.10.4, while

in principle one can increase the throughput by increasing the divergence angle within the

FTS this results in a natural apodization of the interferogram, which limits the maximum

attainable resolution. Hence, there is a trade-off between attainable resolution and signal

intensity.

2.9 The Fellgett advantage

The multiplex advantage[43] of an FTS, also known as the Fellgett advantage,

is due to the exposure of an interferometer to all spectral components of a signal at all

times. To illustrate the Fellgett advantage an example comparing an FTS with a dispersive

spectrometer is given. In a dispersive spectrometer[30] only a narrow range of wavelengths

are measured at a given instant. By comparison, in an FTS all source wavelengths are

incident on the detector at all times. This leads to a multiplex advantage also known as

the Fellgett advantage.

Suppose a spectrum is measured between σ1 and σ2 with a resolution δσ (cm−1).

The number of spectral elements, M , in the band is given by

M = (σ2 − σ1)/δσ. (2.34)

If a grating spectrometer is used then each small band of width δσ can be observed for a

time
T

M
where T is the total time required to scan the full spectrum. The integrated signal

received in a small band δσ is proportional to
T

M
. If the noise is random and does not

depend on the signal, then the signal noise should be proportional to

√
T

M
. Therefore, the
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S/N for a grating spectrometer is [37]:

S/NG ∝
√
T

M
. (2.35)

An FTS measures all wavelengths at all times. Therefore the integrated signal in a small

band δσ is proportional to T (rather than
T

M
) and the signal noise is proportional to

√
T .

Thus, for an interferometer, the S/N is[37]:

S/NI ∝
√
T . (2.36)

If the grating and FTS spectrometers have identical (or at least comparable) throughput

then the ratio of the S/N for the two instruments can be written as:

S/NI

S/NG
=
√
M. (2.37)

Since M is the number of spectral elements of width δσ, equation 2.37 indicates that the

interferometer has a much higher S/N than a grating spectrometer. Moreover, it should

be noted that due to the narrow entrance and exit slits of a grating spectrometre[30], the

throughput of an FTS is typically two orders of magnitude larger than a grating spectrom-

eter, which leads to an even greater increase in S/N.

Advances in detector array technology allow grating spectrometers to observe en-

tire spectral ranges simultaneously; however, the FTS can use the same detector arrays to

simultaneously observe many spatial components of the source (i.e. imaging FTS (iFTS))

so the gain is retained [37].

The Multiplex advantage is lost when the signal noise is proportional to the square

root of the source intensity (i.e. photon noise) as the ratio of FTS and grating spectrometer

S/N approaches unity. The Jacquinot advantage (section 2.8) is not lost during photon
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noise limited measurements, however, so the FTS still holds an advantage over the grating

spectrometer.

2.10 FTS design issues

The analysis presented in section 2.6 for determining the spectrum from the inter-

ferogram involve integrating the OPD from −∞ to +∞. In practice, interferograms cannot

be measured out to infinity in either direction of OPD, but to a finite maximum OPD, L.

As a result, the spectral resolution achieved is not infinite, but rather finite and is given by:

∆σ =
1

2L
, (2.38)

where L is the maximum optical path difference and ∆σ is the spacing between elements

in the spectrum. Thus the resolution of an FTS interferometer is variable depending on

the OPD length L selected for an interferogram. A consequence of the finite truncation of

the interferogram is a sinc function convolved across the spectrum in the reciprocal Fourier

domain[37]. Thus, FTS interferometer spectra have an inherent sinc instrumental line shape

(ILS).

2.10.1 Phase

Asymmetries in interferograms cause the calculated spectrum to be complex val-

ued. Thus, interferogram asymmetries are observed in spectra as phase. The determination

of the spectral phase, φ(σ), is as follows:

φ(σ) = arctan(
Bi(σ)
Br(σ)

), (2.39)
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where Br is the real component of the spectrum and Bi is the imaginary component of the

spectrum. FTS instrument design and data processing must account for asymmetries in

the interferogram and will be discussed in greater detail in chapter 3.

2.10.2 Noise

Optical noise consists of photon noise and source noise. Photon noise is due to

statistical fluctuations in the rate of arrival of photons. If n photons are measured in a

given time period, the photon noise level is proportional to
√
n. Source noise arises from

periodic and random variations in source intensity over time. The random component of

source noise typically varies as 1/f in the frequency domain[38].

Electrical noise sources can be categorized as Johnson noise, phonon noise, shot

noise, and flicker noise[55]. Johnson noise, also known as white noise, has a flat spectral

profile. Phonon noise is produced by vibrations and temperature fluctuations in the detec-

tors (e.g. bolometers) and the thermal connection to the detector heat sinks[55, 56]. Shot

noise results from time-dependent fluctuations in electrical current caused by the quantized

electron charge, and is well known to occur in solid-state devices such as tunnel junctions,

Schottky barrier diodes, and p-n junctions. Flicker noise has a 1/f frequency profile, similar

to random optical source noise. The shot and flicker noise produced in the detector contacts

is difficult to model, and is measured as excess noise in the detector signal.

Ideally, an FTS is designed such that all noise is reduced to the point where photon

noise dominates through alignment and proper choice of detectors, optics, and readout

electronics. Noise should affect the real and imaginary domains of the spectrum equally.

Therefore, the noise found in the real portion of the spectrum is less than that in the entire
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(i.e. complex) spectrum. Random noise levels are reduced through improving interferometer

stage metrology and signal S/N. The random noise contribution to the interferogram can

never be completely removed but can be minimized through FTS design and data processing

techniques (see chapter 5).

2.10.3 Nyquist and Sampling

The Nyquist sampling theorem[57, 58] states that a signal may be perfectly re-

constructed if the data sampling frequency is twice that of the highest spectral content of

the signal being sampled. Other conditions on the Nyquist sampling theorem are similar to

convergence requirements in a Fourier series and are given in section 2.3.1. For the sampling

of an interferogram, the OPD sampling interval must satisfy the following criteria:

∆z ≤ 1
2σband

, (2.40)

where ∆z is in cm and σband is the spectral bandwidth of the signal (in cm−1). For spectra

including zero frequency as the lowest portion of the band, σband is equivalent to σmax,

the highest spectral frequency component (cm−1). Inversely, the maximum observable or

Nyquist frequency, σnq
1 in cm−1, is given in terms of interferogram OPD sampling interval

by the relation:

σnq =
1

2∆z
cm−1, (2.41)

where ∆z is the optical sampling interval in cm.

In essence, an interferometer is simply an effective method of bringing the unob-

servable high frequencies of light down to observable acoustic frequencies by exploiting the
1The distinction between σnq and σmax is this: σnq is the highest frequency that the spectrometer is

capable of observing while σmax is the highest frequency (or band if zero frequency is not required) that is
actually present in the spectrum.
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principle of interference. Assuming that the spectrum is not under-sampled (i.e. no aliasing)

then, for a rapid scan FTS, the highest modulation frequency found in an interferogram,

νmax (Hz), is related to the highest spectral frequency, σmax, as follows:

νmax = vOPDσmax Hz, (2.42)

where vOPD is the speed of the translation stage in optical path difference.

For example, an optical source of 0.1 cm wavelength (λ = 0.1 cm, σ = 10cm−1)

has a frequency of 300 GHz. A Michelson interferometer with a translation stage moving

at 1 cmopd/s will modulate the 300 GHz oscillation down to 10 Hz (equation 2.42). This is

a frequency reduction on the order of 1011.

It is common practice to measure the interferogram in equal increments of optical

path difference, which allows use of the FFT algorithm. The FFT algorithm[2] computes

the discrete Fourier transform of N data points on the order of N log2N , as compared to

a time scale on the order of N2 for the discrete Fourier transform algorithm. The FFT

algorithm requires at least one unique data point at ZPD(see figure 3.2). Failure to sample

the exact position of ZPD correctly results in phase errors in the spectrum which will be

discussed in chapter 3.

Stage Velocity

In rapid-scanning observation mode, interferometer mirror stage velocity is limited

by the detector roll-off frequency[59]. For a Michelson interferometer, the relationship

between the maximum spectral frequency (σmax), the stage velocity, and the detector roll-
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off frequency (νmax in Hz) is given by

σmax =
νmax

v
(cm)−1 (2.43)

where v is the optical linear stage velocity in cm/s.

2.10.4 Natural apodization

In the case of a point source located at a focus of a lens which feeds an inter-

ferometer, the resulting collimated beam has no divergence and thus the overlap of the

recombined beams from the interferometer is independent of OPD. In reality, however,

all interferograms suffer from some degree of distortion due to the divergence of radiation

within the interferometer. In a real interferometer the entrance aperture has a finite size

which means that a beam entering the interferometer is divergent and the overlap between

the recombined beams depends upon OPD; this leads to the phenomenon known as natural

apodization.

Consider light entering an interferometer’s entrance aperture at an angle α away

from the optical axis (see figure 2.2). Where the on-axis OPD is simply z, the off-axis OPD

is z cos(α) instead. The resulting interferogram intensity is determined by integrating over

the solid angle Ω. For a monochromatic source, the interferogram is determined as follows:

I(z) ≈
∫ Ω

0
cos(2πσoz[1−

α2

2
])dΩ′

≈
∫ Ω

0
cos(2πσoz[1−

Ω′

2π
])dΩ′

≈ Ωsinc(
σozΩ
2π

) cos(2πσoz(1−
Ω
4π

)).

(2.44)

Two simplifications are incorporated into the above expression. Firstly, the small angle
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Entrance
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Figure 2.2: Diagram of off-axis light due to a finite sized entrance aperture on an FTS.

approximation (i.e. cos(α) ≈ 1 − α2

2
) and secondly, a circular aperture at the focus of

a collimating mirror has solid angle Ω = πα2. Equation 2.44 shows that the measured

interferogram is different from the ideal interferogram (equation 2.26 change in the cosine

term as well as a multiplication by a sinc function.

There are two effects on the interferogram/spectrum caused by the finite entrance

aperture of a non-ideal interferometer:

• the interferogram envelope is multiplied by a sinc function, and

• there is both an OPD and wavenumber scale change.

The scale change in OPD and wavenumber can be expressed as z′ = z(1 − Ω
4π

) and σ′ =

σ(1− Ω
4π

).

The multiplication of the interferogram by a sinc function is equivalent to convolv-

ing the spectrum with a rectangular function. For a monochromatic source at frequency

σo, the spectral line appears to be at σo for the on-axis signal, but for the most oblique

rays with the shortest OPD (z′ = z cos(α)) the spectral line will be shifted to σo(1−
Ω
2π

).

Thus the observed line will be centred at σo(1−
Ω
4π

) and will have a width increase of
Ωσo

2π
.



2.11. CONCLUSIONS 37

Therefore, spectral resolution greater than
Ωσo

2π
cannot be achieved as the rectangular con-

volution has broadened all spectral features. Resolving power of an interferometer is given

as:

R =
σ

∆σ
. (2.45)

The limit on spectral resolution can be related to resolving power as follows:

R ≤ σ
σΩ
2π

R ≤ 2π
Ω
,

(2.46)

where the inequality above is known as the Jacquinot criterion[38]. The Jacquinot criterion

prescribes an upper limit on both the resolution of an interferometer and the size of the

entrance aperture (and hence the maximum off-axis angle).

There is also a component of natural apodization due to the finite scan range of

actual FTS interferometers. Essentially, an infinite interferogram is multiplied by a finite

rectangular function of width ±L. This is equivalent to convolving the spectrum with a

sinc function (with full width at half maximum (FWHM) ∼ 1.207
L ). Thus the natural ILS

of an FTS with a collimated input is a sinc function. The natural ILS of an FTS without

a collimated input is a sinc function convolved with a rectangular function.

2.11 Conclusions

This chapter has introduced the mathematics behind the operation of an FTS. The

classical Michelson FTS design was introduced and the Jacquinot and Fellgett advantages
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of the FTS have been explored. Limitations of the FTS have also been explored in areas

such as natural apodization, sampling, noise, symmetry, resolution, finite travel, and finite

aperture size. The FTS, with its simple optomechanical design, broad spectral coverage,

high throughput and variable resolution make it a choice spectrometer for measurements of

weak astronomical signals at submillimetre wavelengths.
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Chapter 3

Phase Correction

3.1 Overview

In Fourier transform spectroscopy, measured interferograms are likely to contain

phase errors. When operating an FTS in single-sided operation (section 3.2), as is the case

for the Herschel SPIRE spectrometer, it is necessary to phase correct the interferograms

to obtain accurate spectra. The Herschel SPIRE spectrometer contains two beam-splitters;

both of which are expected to have a non-linear, perhaps unique, phase response. This

chapter will discuss sources of phase errors and two phase correction methods introduced

by Mertz[60] and Forman[61].

3.2 Terminology

There is considerable discrepancy in the literature regarding the terminology as-

sociated with FTS interferograms. The terminology used in this work is defined here for
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Figure 3.1: The interferogram of a spectrum containing a broad Gaussian emission line on
which are superimposed several Gaussian absorption features and a random noise compo-
nent. Also shown is the envelope function, Env(z), in red. If LDS = 0 then the resulting
interferogram is one-sided, if LDS

LSS
= 1 then the interferogram is double-sided, and if LDS

LSS
< 1

then the interferogram is single-sided.

clarity, and will be used extensively throughout this and the remaining chapters. Unless

explicitly stated, all values with units of distance are stated in terms of optical path dif-

ference. Figure 3.1 illustrates an interferogram of a spectrum containing a broad Gaussian

emission line on which are superimposed several Gaussian absorption features. The figure

is used to define the terms double-sided, single-sided, one-sided, and envelope function.

An interferogram, although theoretically of infinite length, is recorded over a finite

range of optical path difference determined by the length of the translation stage of the FTS

instrument (see figure 2.1). The term I∞(z) is used to denote a theoretical interferogram

with values over the optical path range z ∈ (−∞,+∞). An actual interferogram can be

considered to be the product of I∞(z) and an envelope function, Env(z):

I(z) = I∞(z)× Env(z). (3.1)
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The value of the envelope function over the interval z ∈ [−LDS , LSS ] is as follows:

Env(z) =


1 z ∈ [−LDS , LSS ]

0 elsewhere.
(3.2)

The interval [−LDS , LSS ], with z = 0 marking the location of ZPD, defines the finite interval

over which the interferogram is actually measured in practice. To distinguish between the

terms one-sided, single-sided, and double-sided the ratio of LDS
LSS

is used. The interferogram

is one-sided for

LDS

LSS
= 0, (3.3)

single-sided for

0 <
LDS

LSS
< 1, (3.4)

and double-sided for

LDS

LSS
= 1. (3.5)

The FFT algorithm[2] requires both positive and negative OPD interferogram

data at the same resolution to calculate a complex Fourier transform. A one-sided inter-

ferogram known to be symmetric may, in principle, be butterflied in order to provide the

FFT algorithm with the required negative OPD information. The process of butterflying

an interferogram involves setting the interferogram values of negative OPD equal to the

corresponding positive OPD values. This is only accurate if the interferogram is of even

symmetry, as is ideally the case:

I(−z) = I(z). (3.6)

The resulting spectrum of the butterflied, one-sided interferogram will have the same reso-

lution as a double-sided interferogram of the same length (i.e.
LDS

LSS
= 1). This, of course,
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neglects any phase errors propagated by the butterflying process which ignores any asym-

metry in the original single-sided interferogram.

3.3 Introduction

The finite amount of stage travel in FTS instruments may be allocated towards two

reciprocal applications. Stage travel may be used for higher spectral resolution (one-sided

interferogram) or it may be used for providing phase information (double-sided interfero-

gram). The idea of measuring a one-sided interferogram was first introduced by J. Connes

in 1970[62]. In many cases, the phase information provided by a double-sided interfero-

gram may be highly over-resolved as phase is typically slowly varying[54, 61, 63]. An ideal

interferogram will contain identical information on both sides of the ZPD position. Theoret-

ically, therefore, the spectrum can be uniquely recovered with an interferogram starting at

ZPD (one-sided interferogram). However, in practice, a single-sided interferogram is mea-

sured in such a way that at least a small amount in the negative OPD region is recorded

in order to characterize the phase. This phase information can then be used to correct the

asymmetry in the high resolution one-sided interferogram. For a translation stage of fixed

length, this leads to a trade-off between the length of the double-sided interferogram used

to determine the phase information, and the one-sided interferogram used to achieve higher

spectral resolution.

There are several causes of phase errors in Fourier transform spectrometers. The

most common type of phase error arises from not precisely sampling the ZPD position of

the interferogram, thereby producing a linear phase error in the spectral domain. Nonlinear
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phase errors can arise from such things as: dispersion in the beam-splitter/compensator,

electronic amplifier frequency response, detector time constants, and misalignment in mir-

rors. Random phase errors may be the result of: noise in the optical/electronic signal,

and variations in the position and velocity of the translation stage. If left uncorrected,

upon Fourier transformation the resulting phase errors will introduce artifacts into the final

spectrum[39].

Phase contributions can be categorized as systematic, variable, and random. Sys-

tematic effects can in principle be calibrated and removed in post-processing. Variable and

random phase require attention at the level of an individual interferogram. The follow-

ing sections discuss phase correction as a technique used to correct for the asymmetry in

single-sided interferograms.

3.4 Theory

The above contributions to phase, φ(σ), can be combined and expressed within

the inverse complex Fourier transform, resulting in an asymmetric interferogram:

Iasymmetric(z) =
∫ +∞

−∞
B(σ)eiφ(σ)e+2πσzdσ. (3.7)

The Fourier transform of a real, non-symmetric function results in a complex function

with even and odd symmetry for the real and imaginary components, respectively[31]. An

interferogram with spectral phase errors will be real but non-symmetric. The complex

Fourier transform (equation 2.29) of an interferogram with asymmetry/phase errors will
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result in a complex valued spectrum:∫ +∞

−∞
Iasymmetric(z)e−i2πσzdz = B(σ)eiφ(σ)

= Br(σ) + iBi(σ),

(3.8)

where Br(σ) and Bi(σ) represent the resultant real and imaginary components of the spec-

trum, respectively. The real and imaginary components are products of the actual spectrum,

and a phase term, as shown below:

Br(σ) = B(σ)cos(φ(σ)) =
∫ +∞

−∞
Iasymmetric(z)cos(2πσz)dz, (3.9)

iBi(σ) = iB(σ)sin(φ(σ)) = −i
∫ +∞

−∞
Iasymmetric(z)sin(2πσz)dz. (3.10)

Due to the asymmetry of Iasymmetric(z) (equation 3.7), the positive (
∫ +∞
0 ) and negative

(
∫ 0
−∞) frequency components of the sine Fourier transform do not cancel out as they do for

the ideal, symmetric interferogram (equation 2.32). As a consequence of this, butterflying

a one-sided interferogram without phase correction will result in spectral errors.

Ignoring any noise contributions, the original spectrum from an asymmetric inter-

ferogram may be recovered by taking the absolute value of the real and imaginary compo-

nents (equations 3.9 & 3.10):

B(σ) = |B(σ)| = [Br(σ)2 +Bi(σ)2]
1
2 . (3.11)

Two problems are associated with the absolute value method. Firstly, the interferogram

needs to be double sided so that the complex Fourier transform may be taken (equation

2.29 rather than equation 2.25). Secondly, we have so far assumed that all of the detector

output is modulated source radiation but there will also be noise included in the signal (see

sections 2.10.2 & 3.5.4). Taking the absolute value of the real and imaginary components
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of the spectrum brings all of the noise out of the imaginary domain into the real. This

results in an undesirable increase in the spectral noise level by a factor of
√

2. Moreover, a

positive valued noise floor is introduced due to the negative noise being inverted to become

positive[64].

Any signal can be expressed as the sum of an even and an odd function[31]. Equa-

tion 3.12 shows the asymmetric interferogram separated into its constituent even and odd

components:

Iasymmetric(z) = Ieven(z) + Iodd(z). (3.12)

Ideally, a single-sided interferogram is symmetric. This assumed symmetry allows both

positive and negative OPD interferogram values to be known even though up to one half

of the interferogram need not be measured. This is equivalent to performing the cosine

Fourier transform (equation 2.25). However, in practice, when Iasymmetric(z) is assumed to

be symmetric and the cosine Fourier transform is performed, spectral errors in lineshape,

line centre, amplitude, etc. are introduced. Equation 3.13 illustrates the output of the

cosine Fourier transform (equation 2.25) when it is used on an asymmetric interferogram:

2
∫ +∞
0 Iasymmetric(z)cos(2πσz)dz = 2

∫∞
0 [Ieven(z) + Iodd(z)]cos(2πσz)dz

= 2
∫∞
0 Ieven(z)cos(2πσz)dz

+2
∫∞
0 Iodd(z)cos(2πσz)dz

= B(σ)cos(φ(σ)) + 2
∫∞
0 Iodd(z)cos(2πσz)dz

6= B(σ)

(3.13)

The correct spectrum (B(σ)) is not only multiplied by a phase dependent component

(cos(φ(σ))), but there is another term (2
∫∞
0 Iodd(z)cos(2πσz)dz) added to the spectrum.



3.4. THEORY 46

The added term is related to the odd-symmetry component of the interferogram, Iodd(z).

Thus, the degree of spectral degradation caused by the non-zero phase depends strongly on

the nature of the asymmetry of the interferogram itself. The difference between B(σ) and

the output of equation 3.13 is as follows:

B(σ)− 2
∫ +∞
0 Iasymmetric(z) cos(2πσz)dz = B(σ)[1− cos(φ(σ))]

−2
∫ +∞
0 Iodd(z) cos(2πσz)dz

and, using the approximation described below, ≈ −2
∫ +∞
0 Iodd(z) cos(2πσz)dz.

(3.14)

The approximation used in equation 3.14 is based on the small angle approximation and is

as follows:

cos(φ(σ)) ≈
√

1− φ(σ)2 ≈ 1. (3.15)

It is important to note that, although
∫ +∞

−∞
Iodd(z)cos(2πσz)dz = 0 due to orthogonality,

the last term in equation 3.14, 2
∫ ∞

0
Iodd(z)cos(2πσz)dz 6=

∫ +∞

−∞
Iodd(z)cos(2πσz)dz and

is thus non-zero. If the phase is small, allowing the small angle approximation, then the

difference between B(σ) and the spectrum produced by equation 3.13 is limited to that

related to Iodd(z). Small phase implies that Iodd(z) will also be small, and thus the resulting

spectral errors may be negligible. If this is not the case, however, then phase correction is

essential to recover accurate spectra.
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3.5 Phase Errors

In practice, the total phase error can be considered to be the summation of several

components:

φ(σ) = φDC + φLin(σ) + φNL(σ) + φR(σ). (3.16)

There can exist a DC phase offset, φDC , due to sources such as inverting amplifiers and high

pass filters in the detector readout electronics. A linear phase error, φLin(σ), arises from not

precisely sampling the location of ZPD. A nonlinear phase component, φNL(σ), may arise

from electronic signal processing or any nonlinear optics such as a dispersive beamsplitter

or optical filter. When there is a quadratic or higher order σ term in the phase then the

interferogram can be described as chirped and a point of stationary phase (equation 3.19)

will not exist[39]. In general there will also be a random component, φR(σ) attributable to

noise. These phase components will be discussed in detail.

The extension of phase into the negative frequencies utilizes the odd-symmetry

relation:

φ(−σ) = −φ(σ), (3.17)

unlike the extension of the spectrum into negative frequencies which utilizes the even-

symmetry relation (equation 3.6). Sheahen[65] discusses numerical errors resulting from a

phase discontinuity at σ = 0 cm−1 if φ(0) 6= 0. This discontinuity involves the limits:

limφ(σ)σ→0− = −φ(0), and

limφ(σ)σ→0+ = φ(0).
(3.18)

Discontinuities in one domain have effects in the reciprocal domain and will be discussed in

greater detail in section 4.4.
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3.5.1 Phase offset - φDC

There is typically electronic amplification in the data collection system of FTS

detectors. In addition to the 180o phase shift of an inverting amplifier, electronic ampli-

fiers (both inverting and non-inverting) typically have a complex frequency response. The

same holds true for electrical filters which are typically used in conjunction with electronic

amplifiers[59]. Ideal in-band phase/amplitude response for an amplifier/filter is flat. Cheby-

shev type filters typically have a flat phase response at the cost of a rounded amplitude

response. This flat phase response is ideal for reducing electronics-based interferogram

phase errors. Conversely, Butterworth and Bessel type electronic filters have a flat ampli-

tude response but a nonlinear phase response. Electronic filter and amplifier behavior is

well understood[66, 59] and resulting phase errors can be minimized.

3.5.2 Linear phase errors - φLin

Linear phase errors arise from incorrect sampling of the interferogram ZPD loca-

tion. The interferogram OPD shift property is useful in explaining linear phase error and is

illustrated in table B.1, where the variable zo is used to express the point of stationary phase

(ideally ZPD). If there is an error in the location of ZPD, or ZPD has not been sampled,

then there will be a linear phase in the spectrum. A symmetric, continuous interferogram

may be sampled such that the resultant discreet interferogram will not be symmetric. Two

unique sampling conditions will ensure that a discreet interferogram does not lose its sym-

metry. As is outlined in figure 3.2, the sampled interferogram will be symmetric if the ZPD

point is sampled exactly, or if the ZPD point lies exactly between two sample points. The
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former sampling condition will have no linear phase error while the latter, although still

symmetric, will have linear phase error (φ(σnq) = π)1. The latter symmetric mode is called

even-extension symmetry[67] and contains the same information with one less data point as

the other symmetric sampling mode. This memory savings may seem small but potentially

allows significant memory/computation savings for large interferogram arrays such as those

generated by imaging FTS, e.g. SPIRE[9] and SCUBA-2[27].

If the ZPD is not measured exactly on a sampled data point, then the spectral

phase will have a linear variation with frequency. Connes[39, 68] discussed the effect of an

error in the choice of the ZPD point on the instrumental line shape. Connes’ considers only

linear phase error due to ZPD missampling. The linear form of the phase is related to the

point of stationary phase as follows:

φLin(σ) = 2πzoσ. (3.19)

If φLin varies linearly with wavenumber, then the interferogram is symmetric about the

point where z = zo which is known as the point of stationary phase.

Unless an accurate fiducial marker is used to determine ZPD, such as that produced

by an interferogram of a broadband optical source, a linear phase error will generally be

present in all measured interferograms and should be removed in order to minimize spectral

errors. The extent of this error depends on the translation stage sampling interval, ∆z.

A finer sampling interval will allow the interferogram to be sampled closer to ZPD and

thus reduce the magnitude of the linear phase error. Figure 3.3 illustrates the sloped phase

resulting from a linear sampling shift in the interferogram. Correcting an interferogram for
1σnq is the Nyquist frequency
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Figure 3.2: Linear shifts of the uniform sampling of an interferogram. The top function
shows the original interferogram prior to sub-sampling (4x). The function immediately
below (green) shows a symmetric sampling scheme including ZPD. Below that (purple) is
an asymmetric sampling of the originally symmetric interferogram. The bottom (red) shows
the even-extension symmetric sampling (ZPD is exactly between two sample points). The
graphs have been offset for clarity.
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Figure 3.3: The resultant linear phase error due to ZPD sampling shift. In each case the
interferogram is sampled uniformly, however the location of the data point closest to ZPD is
shifted, resulting in a linear phase with slope proportional to the corresponding ZPD shift.
A shift of zero results in a slope of zero, while a shift of one sample point results in a phase
shift of 180o at σnq.
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linear phase error is generally straightforward and leaves minimal residual linear phase in

the spectrum[38].

3.5.3 Non-linear phase errors - φNL

Several factors may contribute towards nonlinear phase in FTS spectra[30]. Dis-

persion in the beamsplitter substrate often contributes nonlinear phase. In a normal dis-

persive medium, higher frequencies (shorter wavelengths) appear delayed in time or trail

the lower frequencies (longer wavelengths)[69]. This results in a chirped interferogram as

shown in figure 3.4. By use of a phase compensating plate in the appropriate arm of the

interferometer (figure 3.5) it is possible to minimize the φNL(σ) component introduced by

the beamsplitter.

Dispersion can be described empirically by the Cauchy equation[30]:

n(λ) = C1 + C2λ
−2 + C3λ

−4 + · · ·+ Cmλ
−2(m−1), (3.20)

where n(λ) represents the index of refraction of the dispersive medium, and the Cm terms

are empirical constants. Typically, only the low order terms are included. Since the index of

refraction may also be expressed as a function of σ, the beamsplitter will respond differently

to different frequencies, potentially causing chirping in the interferogram. An example of

nonlinear phase due to beamsplitter dispersion for the TFTS beamsplitter is shown in figure

3.6.

Dispersion compensator plates can be used to minimize the nonlinear phase. Fig-

ure 3.5 illustrates the use of an optical compensating plate in a classical Michelson interfer-
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Figure 3.5: A compensator plate may be used in the fixed beam path of a Michelson
interferometer in order to correct OPD errors resulting from the difference between the
fixed and moving mirror paths of an interferometer. Without the compensator plate, the
red path would only pass through the beamsplitter once, while the blue path passes through
the beamsplitter three times. The beamsplitter is reflective on the upper left side, and the
substrate thickness is labeled on the figure as d. The thickness of the compensator plate
is labeled as d’. The difference between d and d’ is referred to as η in equation 3.21. The
non-reflective side of the beamsplitter and both sides of the compensator may be coated
with an anti-reflection coating to reduce undesired reflections. Phase error will result from
compensator mismatch.
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Figure 3.6: A measure of the φNL(σ) dispersive phase of the TFTS beamsplitter. The
phase was determined by averaging several linear phase corrected interferograms of a 1300 K
Blackbody source measured with the SPIRE TFTS (chapter 6). The phase as shown is the
result of two data sets from different detectors (both used with the TFTS) being merged
together to cover a window including the entire SPIRE band. Below 7 cm−1 and above
55 cm−1 the phase is undetermined because of low S/N.
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ometer. Sheahen indicates that optical compensation errors can result in a constant phase

offset at best, and often a frequency dependant phase as well[70]. Optical compensation is

also done at the cost of optical efficiency and throughput[37, p. 125]. Learner[64] discusses

nonlinear phase as the result of an optical mismatch when a compensator plate is used. In

this case, the phase takes the form:

φ(σ) = 2πσ[n(σ)− 1]η, (3.21)

where n(σ) is the refractive index of the material, and η is the mismatch in thickness (cmopd).

For constant index of refraction, this turns into a linear phase error, but for a dispersive

medium this remains nonlinear, provided that η 6= 0. FTS mirror misalignment may also

cause nonlinear phase errors. Kunz and Goorvitch[71] describe how the combined effect

of a converging beam of light and a translation stage mirror misalignment in a Michelson

interferometer produce interferogram asymmetries. Each effect considered separately leads

to a symmetric interferogram with reduced modulation intensity, however the combined

effect also causes asymmetry in the interferogram. Schröder and Geick[72] discuss how

an angular misalignment in the moving mirror of a Michelson interferometer may lead to

interferogram asymmetry if the beamsplitter is not at the focal plane (as is usually the case),

or if the source is not collimated. Usually the beam is collimated with the residual divergence

as minimal as possible to satisfy the Jaquinot criterion[37] (see equation 2.46). Goorvitch[73]

has also shown misalignment of the moving mirror in a Michelson interferometer to cause

a nonlinear phase error:

φNL(σ) = − arctan(
πDασ√
2(f/)

)2, (3.22)
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where D is the distance from the fixed mirror to the focus, α is the mirror misalignment

angle (radians), and f/ is the f number of the radiation traversing the FTS instrument.

For (
πDασ√
2(f/)

)2 < 1, as is also a requirement to minimize interferogram power loss[71] due

to a mirror misalignment in an FTS instrument with converging light, the nonlinear phase

relation simplifies to become quadratic:

φNL(σ) = −(
πDασ√
2(f/)

)2. (3.23)

For the SPIRE TFTS (chapter 6) the values of D and f/ are 66.3 cm and 2.33,

respectively. For example, using the above equation it can be shown that the angular

misalignment on the TFTS mirror must be kept within 0.005o, 0.003o, 0.003o, 0.004o, and

0.002o for the PLW, PMW, PSW, SLW, and SSW bands, respectively to have residual phase

no greater than 1o. Mirror alignment becomes more critical for higher frequencies as one

would expect for any nonlinear function. Figure 3.7 illustrates the theoretical non-linear

phase resulting from a varying TFTS mirror misalignment. As discussed earlier, electronics

and filters may also introduce asymmetries into an interferogram, and thus introduce a

non-zero phase component into the spectrum. Also, a symmetric interferogram may be

recorded asymmetrically due to the frequency dependance of the response function of the

detector and the electronic system[65].

Non-linear phase errors may create the illusion of spectral features where there are

none[70]. Failure to correct for the nonlinear phase terms leads to line position shift as well

as an asymmetric ILS[74, 64]. φNL(σ) is significantly more difficult to correct for than φDC

and φLin. It is important to minimize sources of φNL(σ) where possible, and to be aware

of the residual φNL(σ) where it is not possible to remove. The SPIRE FTS is expected to
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Figure 3.7: The effect of varying mirror misalignment on φNL(σ) for the SPIRE TFTS
(equations 3.22 and 3.23). The upper plot shows the calculations using equation 3.22
without the simplifying assumption. The lower plot shows the curves from the upper plot
(solid) in addition to the quadratic phase curves (broken) resulting from the power loss

minimization restriction ((
πDασ√
2(f/)

)2 < 1).



3.5. PHASE ERRORS 59

have nonlinear phase2 (figure 3.6) which will require phase correction prior to quantitative

spectral analysis. However, the TFTS nonlinear phase is systematic and therefore remains

constant for the instrument (see section 4.5). Calibration measurements of the nonlinear

phase allows the residual nonlinear phase of the TFTS to be minimized in post-processing.

3.5.4 Random phase errors - φR

An interferogram (I(z)) consists of two key measurements, optical signal (I) and

OPD (z). The optical signal can be affected by both optical and electrical noise while the

optical path measurement can be affected by mechanical vibrations and electrical noise.

Noise is discussed in detail in section 2.10.2. Interferogram noise will propagate into the

spectrum, which will in turn introduce noise into the phase. Phase uncertainty is related to

spectral uncertainty by the inverse of the spectral amplitude (δφ(σ) =
δB(σ)
|B(σ)|

, see appendix

D). Therefore, phase uncertainty is greatest in regions of low spectral amplitude.

An ideal FTS will be designed such that all noise levels are reduced to the point

where photon noise dominates. Random noise should affect the real and imaginary domains

of the spectrum equally. Therefore, phase correction has the potential of affecting the spec-

tral noise due to the redistribution of the spectrum between the real and imaginary domains.

Random noise levels are reduced through improving interferometer stage metrology and op-

tical signal S/N. Slowly varying phase information is typically within the centreburst[38]

(i.e. ZPD) region of the interferogram where S/N is the highest. The random noise con-

tribution to phase, φR(σ), can never be completely removed but can be minimized through

FTS design and data processing techniques (see chapter 5).
2According to TFTS verification measurements (section 6.5)
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3.6 Phase correction methods

Phase correction is the technique of correcting asymmetric interferograms[38]. In

principle, to correct the phase, the phase distorted spectrum (B(σ)eiφ(σ)) must be multiplied

by the reciprocal of the phase (e−iφ(σ)):

B(σ) = [B(σ)eiφ(σ)]e−iφ(σ), (3.24)

however this is more complicated in practice as every spectral data point only has corre-

sponding phase information if the interferogram used to generate the spectrum is double-

sided. Since phase is expected to be slowly varying, phase correction methods have been

developed to extract low resolution phase information from the double-sided portion of the

interferogram to correct the higher resolution spectrum obtained from the one-sided portion

of the interferogram.

The essential result of any phase correction procedure is to restore the spectral

energy from the imaginary domain back to the real, leaving only the undesired imaginary

noise behind. In the spectral domain, this rotation of energy to the real domain from the

imaginary is accomplished with a multiplication by the reciprocal phase function (equation

3.24). In the interferogram domain, this corresponds to a convolution (table B.1) by the

appropriate function known as the phase correction function (PCF) (equation 3.31). This

section will discuss both the multiplicative (Mertz[54]) and the convolution (Forman[46, 61,

75]) phase correction methods.
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3.6.1 The Mertz Method

In Mertz phase correction[54] the initial step is the determination of the double-

sided phase (equation 2.39). The spectrum from the single-sided interferogram is of a higher

resolution than that of the phase information provided by the double-sided interferogram.

A combination of zero filling and linear interpolation is used to determine the phase at

the required resolution[76]. Apodization of the double-sided interferogram is recommended,

and in his original paper, Mertz suggested that a triangular type of apodization[77] (figure

E.1) be used on the double sided interferogram although this is now regarded as far from

optimal[78]. The Mertz method found favour through its elegant simplicity decades ago

when computer capabilities were significantly less than they are today and multiplication

was much preferred to convolution[60].

The single-sided interferogram needs to be appropriately weighted to ensure that

each point of optical retardation is equally accounted for. Multiplying an apodizing function

with an interferogram is equivalent to convolving the corresponding spectrum with the

Fourier transform of the apodizing function (more on apodizing in section 4.8). The Fourier

transform of the apodizing function is known as the ILS[38].

Unequal weighting of interferogram points results in deviations in the ILS from the

ideal sinc profile (see section 2.10.4). Ideally all of the points that are doubly accounted for

would be weighted equally, and the weighting of the remaining points would be twice that

of the doubly accounted points. This is not practical, however, as the weighting function

would then have discontinuities at ±LDS . To address this discontinuity problem a linear

weighting with value of 0 beginning at −LDS and ending with a value of 1 at +LDS within
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Figure 3.8: Mertz phase correction involves a narrow double-sided interferogram (A) ,
suitably apodized (B), to obtain a low resolution spectrum (real - black, imaginary - red)
and phase (green) (C). The phase is interpolated and used to generate a multiplicative
correction function. The full interferogram is weighted (D) to obtain the uncorrected high
resolution spectrum (E). The real component of the complex multiplication of e−iφ(σ) and
E result in the corrected spectrum (F). In all spectral plots, black is the real component,
and red is the imaginary.



3.6. PHASE CORRECTION METHODS 63

the double-sided window is used instead of the flat amplitude of 1
2 (see figures 3.9 & 3.10).

This also ensures that each point receives the appropriate weighting without having an

abrupt discontinuity at +LDS .

The linear weighting scheme is based on the assumption of a symmetric interfero-

gram. Phase correction is fundamentally necessary because interferograms are not symmet-

ric and therefore this assumption is problematic. Chirped interferograms are not symmetric

and thus the linear weighting scheme devised to overcome the discontinuity problem is not

the best solution. Other methods to have appropriate weighting, avoid function/derivative

discontinuities, and to equally weight an asymmetric double-sided interferogram use curved

(e.g. cosinusoidal) sections between the flat regions as is shown in figure 3.9. Examples of

various Mertz envelope weighting functions, EnvMertz(z), with their corresponding complex

ILS(σ) functions are shown in Figures 3.9 & 3.10.

3.6.2 The complex line shape of the Mertz method

As shown in figures 3.9 & 3.10, the Fourier transform of EnvMertz(z) can be

expressed in terms of real and imaginary components:

ILSMertz(σ) = ILSreal(σ) + iILSimaginary(σ), (3.25)

where ILSreal(σ) is symmetric and ILSimaginary(σ) is antisymmetric. EnvMertz(z) multi-

plied with the interferogram is equivalent to convolving ILSMertz(σ) with the spectrum as

follows (see section 4.8):

EnvMertz(z)× I(z)⇔ [ILSreal(σ) + iILSimaginary(σ)] ∗B(σ). (3.26)
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Figure 3.9: A typical weighting function used in the Mertz method of phase correction. The
central region is doubly accounted for and as such each point is weighted by 0.5. EnvMertz(z)
can be broken up into an even (Enveven(z)) and an odd (Envodd(z)) component as is shown.
The ILS of the even component is exactly a sinc function and the ILS of the odd portion
is entirely imaginary. The transition between weighting levels is done with a sinusoidal
function to ensure no discontinuities in both the function and its derivative. The real
components of the spectra are shown in black and the imaginary components are shown in
red.
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Figure 3.10: Other potential weighting functions for the Mertz method. First is shown the
linear function proposed by Mertz, second is a function with Gaussian transition curves,
and third is shown wide sinusoidal curves in the double-sided portion of the interferogram.
The even portion of all of the weighting functions results in a real valued sinc spectral ILS.
The real components of the spectra are shown in black and the imaginary components are
shown in red.
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In this equation ⇔ represents the Fourier transform pair (see appendix B) and convolution

is denoted by ∗ (see appendix C). Since an ideal interferogram has a wholly real spectrum;

the real part of the convolution, ILSreal(σ) ∗ B(σ), gives the required spectrum, and the

imaginary part can be discarded. For even a small residual phase error in the spectrum,

φresidual(σ) (expressed in radians), the imaginary part can no longer be completely ignored.

The spectrum, B(σ), which only has a real component, is observed3 to be complex valued

due to the residual phase (ignoring the ILS convolution for now):

Bobs(σ) = B(σ)eiφresidual(σ), (3.27)

and using the small angle approximation (equation 3.15) can be expressed as:

Bobs(σ) = B(σ)eiφresidual(σ)

= B(σ)cos(φresidual(σ)) + iB(σ)sin(φresidual(σ))

≈ B(σ) + iφresidual(σ)B(σ).

(3.28)

Therefore, B(σ) is recovered by taking the real portion of Bobs(σ), however equation 3.28

neglected the ILS convolution that also affects the observed spectrum. Equation 3.29 does

take the ILS convolution into account. The combination of residual phase and an imaginary

portion to the ILS results in the real portion of Bobs(σ) being different from the expected

B(σ) ∗ ILSreal(σ). Since the ILS width should be fairly narrow, φresidual(σ) should be

relatively constant over the instrument profile. This allows the real part of the Mertz
3The subscript obs is used to differentiate the observed spectrum, Bobs(σ), from the actual spectrum,

B(σ).
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spectrum to be expressed as:

Re[Bobs(σ)] = B(σ) ∗ ILSreal(σ)− [φresidual(σ)B(σ)] ∗ ILSimaginary(σ)

≈ B(σ) ∗ [ILSreal(σ)− φresidual(σ)ILSimaginary(σ)]

6= B(σ) ∗ ILSreal(σ).

(3.29)

The difference between the expected and observed real spectrum is

[φresidual(σ)B(σ)] ∗ ILSimaginary(σ).

It is important to note that within this additional term, ILSimaginary(σ) is of odd symmetry

so the effective ILS is distorted. The added term involving the asymmetric instrument

function displaces and distorts all the observed lines by an amount proportional to the

residual phase error[64]. Thus the ILS no longer has the ideal sinc profile, but has an added

asymmetric contribution.

The above expressions show asymmetric ILS even with residual phase assumed to

be small enough to allow the small angle approximation (equation 3.15) and to be slowly

varying. If φresidual(σ) is not small or slowly varying, then the simplifying assumptions are

no longer valid and the resulting Mertz ILS is even more complicated and distorted from

the ideal[76, 79, 80].

3.6.3 The Forman Method

In this method, also known as the symmetrization-convolution method[61, 76], the

short double-sided portion of the interferogram is used to calculate the phase spectrum at

low resolution (equation 2.39). The resulting phase spectrum is then used to generate a
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phase correction function (PCF) given by:

PCF (z) =
∫ +∞

−∞
e−iφ(σ)e+2πσzdσ. (3.30)

Convolution of the PCF with the original interferogram results in a symmetric interfero-

gram:

Isymmetric(z) = Iasymmetric(z) ∗ PCF (z). (3.31)

The fundamental phase determination used in the Forman method is similar to the Mertz

method, however, the two methods now proceed along different paths. The Forman method

utilizes the equivalence of the multiplication/convolution Fourier transform pair (see table

B.1). Rather than multiply the high resolution spectrum by the reciprocal of the phase,

e−iφ(σ), the original interferogram is convolved with the PCF. Forman argues that prior

to the calculation of the PCF, mathematical bandpass filtering can be added into the data

processing at no extra processing or information cost[61]. The PCF may also be apodized in

order to minimize the introduction of spectral artifacts, which are caused by discontinuities

at the boundaries of the PCF being convolved through the interferogram. Forman developed

his own apodization function[61, 39] (see appendix E) for the PCF apodization.

Forman also discussed repeating the convolution more than once to further improve

the spectral correction. Theoretically, however, if the phase correction convolution function

was determined correctly the first time, one convolution should be sufficient to phase correct

the interferogram (see section 4.2).
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Figure 3.11: The Forman phase correction method involves a narrow double-sided interfer-
ogram (A), used to obtain low resolution amplitude (B) and phase (C) spectra. The phase
correction function (D) is generated from the phase (equation 2.39) and convolved with
the original single-sided interferogram to generate the phase corrected interferogram (E).
D also shows the PCF apodization function (red) which Forman developed (equation E-4).
The corrected high resolution spectrum (F) shows a broad Gaussian continuum with an
unresolved absorption line. In all spectral plots, black and red show the real and imaginary
components, respectively.
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3.6.4 Phase correction of emission line spectra

Phase correction of emission line spectra is similar to continuum and absorption

spectra phase correction, but is complicated by the fact that the phase uncertainty is in-

versely proportional to spectral amplitude[64]. Therefore phase information is only present

in a spectrum where there is non-zero amplitude, which is more prevalent with a continuum

present. There are two main limitations to phase determination in emission spectroscopy.

First is the limited S/N, second is the availability of suitable reference lines. One method

that is commonly used to determine the instrumental phase involves using a strong con-

tinuum source. With correction of systematic phase from instrument calibration measure-

ments, the only additional correction required on each individual interferogram is linear,

which is fairly straightforward with even a relatively low number of emission lines. SPIRE

will not have phase determination issues due to lack of continuum because of the prevalence

of broad spectral emission in the sub-mm Infrared (IR) band. Phase correction of emission

line spectra becomes an issue for higher frequencies such as ultra violet (UV) spectroscopy

where continuum emission is not typically present[81].

Two related problems occur in the phase correction of emission spectra that are

not usually significant for absorption spectra. The first is that reliable phase information is

only present within strong emission lines. The second problem is that there are mechanisms

that introduce false phase data such as ghosting effects. As long as the phase determination

of an emission spectrum is done properly, the remainder of the phase correction is similar

to absorption/continuum phase correction methods.
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3.6.5 Other approaches to phase correction

There are other methods of phase correction which have found a more limited use

than the Mertz and Forman based methods. For example, precise line shape error minimiza-

tion is a different approach to phase correction which only requires one-sided interferograms.

Other methods use different means of phase error identification. These methods will not be

discussed here, but are discussed in the literature[65, 70, 74, 82, 83].

3.7 Comparison of the Mertz and Forman methods

The fundamental equivalence between the Mertz and Forman method lies in the

convolution/multiplication Fourier transform pair (see appendix B and table B.1). Both

phase correction methods are equivalent to the first order[84], however secondary effects

vary. Both phase correction methods were introduced at a time when computer processing

capabilities were far more primitive than they are today. As a result, the relative sim-

plicity of the spectral multiplication utilized in the Mertz method gained favour over the

complicated interferogram convolution found in the Forman method. As FTS instruments

and data processing capabilities have advanced through the years, the advantages of the

simplistic Mertz phase correction have lost ground over the versatility of the Forman phase

correction method.

3.7.1 General comparisons

In order to illustrate the differences between the Mertz and Forman phase correc-

tion methods, both methods have been used to correct the same interferograms. The input
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spectra are composed of a broad Gaussian emission line with an unresolved Gaussian ab-

sorption feature superimposed. Two basic types of phase error, both linear and quadratic,

are introduced to distort the interferograms. All of the processing parameters were kept

identical to ensure a valid comparison. The spectral output of each method as well as the

difference from the input spectrum is shown in figure 3.12.

Forman Mertz
Phase Error type Linear Quadratic Linear Quadratic

Continuum
Amplitude 0.41 % 0.42 % 1.24 % 0.95 %
Line centre 0.0016 % 0.0012 % 0.0015 % -0.0599 %
Line width -0.12 % -0.12 % -2.54 % -2.53 %

Unresolved
Amplitude 24.7 % 24.7 % 61.7 % 61.6 %
Line centre -0.027 % -0.027 % -0.027 % -0.027 %
Line width 2.19 % 2.19 % 22.39 % 22.37 %

Table 3.1: Comparison of the spectral feature errors from the Mertz and Forman methods
of phase correction with linear and quadratic phase error. Errors are represented as per-
centages of the model parameters for the zero-phase spectrum. The errors on the amplitude
of the unresolved absorption line are significantly larger than any of the other parameters.
This is primarily due to the nature of the unresolved line and the fact that the spectrum
is only discretely sampled. The Forman method preserves the lineshape significantly better
than the Mertz method as is shown in figure 3.13.

To quantitatively evaluate the phase correction methods, an Interactive Data Lan-

guage (IDL)[3] procedure was written to fit the spectrum to a theoretical one containing a

broad Gaussian continuum and an unresolved (sinc) absorption line centered at the same

frequency. In this analysis the line amplitude, centre, and width for both the Gaussian

and unresolved lines were free parameters. The minimization of χ2 in this six-dimensional

space was used to determine the parameters for the best model fit. The phase corrected

spectra as well as the modeled fit spectra for the Mertz and Forman methods with linear

and quadratic phase error are shown in figure 3.13. The resulting errors in amplitude, line
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centre, and line width are shown in table 3.1.

Both the linear and the chirped (quadratic phase) interferograms are corrected

better by the Forman method than by the Mertz method. The point of stationary phase (zo),

about which the interferogram symmetry is expected to lie, is shifted for an interferogram

with linear phase and does not exist for a chirped interferogram. The unequal weighting of

the double-sided interferogram in the Mertz method (figure 3.10) weights the positive OPD

region of the interferogram with more confidence than the negative OPD region. This will

introduce artifacts into the Mertz spectrum (and ILS) because of the lack of symmetry of an

interferogram with phase errors. This is evidenced by the fact that Mertz line centre error

is comparable to Forman line centre error, however other spectral errors (with a stronger

connection to the ILS) are significantly larger for the Mertz correction than for the Forman

correction (table 3.1).
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Figure 3.12: Spectra resulting from the Mertz and Forman phase correction methods on
data with linear and quadratic phase. The zero-phase spectrum is shown in black, with the
Forman spectra shown in blue and the Mertz spectra shown in green. Below each spectral
plot is a plot showing the difference from the phase corrected spectrum and the zero phase
spectrum. The Forman difference plots are shown in green while the Mertz difference plots
are shown in blue. The graphs have been offset for clarity.
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Figure 3.13: Output spectrum from the Mertz and Forman methods compared to the least
squares fit. From top to bottom (in colours black, brown, red, orange), the curves shown
are spectrum (corrected for linear phase error), fit (of the spectrum immediately above),
spectrum (corrected for quadratic phase error), and fit (of the spectrum immediately above).
The Forman results are shown in the top figure while the Mertz results are shown in the
bottom figure. Note the reduced amplitude of the unresolved absorption line in all the
Mertz spectra. The data illustrated here is the same as is illustrated in figure 3.12.
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3.7.2 Comparisons for SPIRE instrument verification

The effect of both phase correction methods on the modeled spectra for SPIRE

ground testing is also important. Details of the SPIRE ground testing and CQM model

verification will be discussed elsewhere (chapter 7), however, a simple spectrum including

a blackbody radiation source, atmospheric transmission, beamsplitter phase, optical fil-

ter profile, and mirror efficiency has been generated to assist in the preparation of data

processing software[15]. In order to evaluate the performance of both methods of phase

correction, output spectra are generated and compared to a zero-phase spectrum of the

same model data. The spectra and differences are shown in figure 3.14. Application of the

phase correction techniques discussed in this chapter applied to the optimization of SPIRE

data processing is found in chapter 5.
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Figure 3.14: A model atmospheric transmission spectrum for the SPIRE ground test facility
at RAL. The atmospheric beampath length is 5m, with temperature 290 K and 1013 mbar
pressure. Double-sided and single-sided resolution are at 0.07 and 0.014 cm−1 respectively,
comparable to the capabilities of the SPIRE TFTS (chapter 6). The Forman and Mertz
methods are shown in blue and green, respectively. The differences (below) are offset for
clarity. The in-band RMS error of the Mertz method is an order of magnitude larger than
that of the Forman method (0.12 vs. 0.02).
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3.8 Conclusions

Phase errors can be systematic, variable, and random. Whenever possible, system-

atic phase can be minimized and calibrated at the instrument level. Nonlinear phase errors

are typically both systematic and difficult to correct for and thus should be minimized,

with residual nonlinear phase recorded with calibration measurements. The most common

variable phase error is linear, which is easily corrected.

The Forman phase correction method has been shown to perform better than the

Mertz method, as is illustrated in section 3.7. Chase discovered that for a comparable

number of points the residual errors were less for the Forman method than for the Mertz

method[76]. There are situations when the Mertz method will suffice, however, the quality

of the resultant spectrum will be greater if the Forman method of phase correction is used.

An enhanced version of the Forman method is discussed in chapter 4. Several sources in

the literature cite the advantages of the Forman method over the Mertz method.[61, 62, 39,

76, 79, 84] For these reasons, a Forman based method (see chapter 4) has been selected to

correct the phase errors in the SPIRE/CQM verification test campaign.
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ABSTRACT 

We present the preliminary design of FTS-2, an imaging Fourier transform spectrometer (IFTS) for use with SCUBA-2, 

the second generation, wide-field, submillimetre camera currently under development for the James Clerk Maxwell 

Telescope (JCMT). This system, which is planned for operation at the start of 2007, will provide simultaneous 

broadband spectral imaging across both the 850 and 450 µm bands with variable resolution ranging from resolving 

powers of R ~10 to 5000. The spectrometer uses a folded Mach-Zehnder configuration and novel intensity beam 

dividers. The mechanical and optical design of FTS-2 as of the Critical Design Review stage of the project are discussed, 

along with the interfaces with SCUBA-2 and the JCMT.   

Keywords: Fourier, Spectrometer, SCUBA-2, Submillimetre, JCMT 

 

1. INTRODUCTION 

One of the major unsolved problems of modern astrophysics is a detailed understanding of the processes underlying star 

formation. Since star formation is intimately linked with planetary formation, this problem has fundamental significance 

not only for our immediate galactic environment, but also in the study of the early universe. Despite significant progress 

in the past two decades
1,2

, several aspects of star formation remain poorly understood, including:  

• What are the physical conditions at the onset of, and what initiates protostellar collapse in a molecular cloud?  

• What is the efficiency and time scale of star formation?  

• What determines the distribution of stellar masses at birth (the initial mass function)?  

It is now well established that stars form from the collapse of dense cloud cores in the interstellar medium, but remain 

cocooned in their natal envelopes of gas and dust. The optical opacity of this material is so great that these cores can 

only be studied at far-infrared and submillimetre wavelengths where the dust emission is optically thin. A number of 

space and ground-based astronomical instruments, many of them discussed in these proceedings, are currently under 

development to address these questions.  

Building on the highly successful SCUBA camera
3
, which operated on the James Clerk Maxwell Telescope (JCMT) 

between 1997 and 2005, a new, large format, submillimetre camera, SCUBA-2, is currently under development for use 

at the JCMT
4
. SCUBA-2 features two dc-coupled, monolithic TES filled arrays with a total of ~10,000 bolometers, 

unlike previous detectors which have used much smaller arrays of discrete bolometers. With its larger format and 

increased sensitivity, SCUBA-2 promises a factor of 1000 increase in mapping speed compared to its predecessor.  

While SCUBA-2 will provide unprecedented morphological information on the structure of submillimetre astronomical 

sources, their composition and physical conditions can only be determined through imaging spectral measurements. A 

Fourier Transform Spectrometer (FTS) has been selected as the optimal instrument for medium resolution spectroscopy 

when used in conjunction with SCUBA-2. This choice was based on the well known advantages of Fourier spectroscopy, 

including:  

 



 

 
 

 

• Simultaneous broadband, readily adjustable intermediate resolution measurements across both the 850 and 450 

µm SCUBA-2 bands 

• The best instrumental line shape function of any spectrometer 

• Intrinsic wavelength calibration and relatively easy intensity calibration  

FTS-2 will be primarily a galactic spectrometer (e.g. spectral index mapping of molecular clouds), but will also provide 

useful information on bright nearby galaxies and planetary atmospheres. FTS-2 thus fills a niche between the two band 

SCUBA-2 continuum images and the higher spectral resolution, but limited-sized images produced by the JCMT 

heterodyne facility instrument HARP-B.  

Since the layout of the JCMT - SCUBA-2 feed optics was well advanced prior to the decision to include an intermediate 

resolution spectrometer, the mechanical, optical, and software design of FTS-2 was significantly more challenging. 

Previous papers have discussed the conceptual design of FTS-2.
5,7

 In this paper we review the current PDR level design 

of the FTS-2 instrument emphasizing the optical, mechanical and software design, as the project enters the CDR phase. 

2. OPTICAL DESIGN 

FTS-2 intercepts the SCUBA-2 optical beam near an intermediate image plane directly outside the telescope elevation 

bearing opening (see Fig. 1). The optical design problem is essentially to reproduce the original image and pupil after the 

beam for each port has passed through the interferometer, while maintaining unity image magnification, in order to allow 

the instrument to be used with the existing SCUBA-2 feed optics. Within the interferometer, there are additional design 

constraints that the beams at the rooftop mirrors must be collimated, there must be pupils located at the rooftop mirrors 

(at the ZPD location) for symmetry, and there must also be pupils near the beamsplitters in order to minimize the 

beamsplitter diameters.  
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Fig. 1. FTS-2 location within the JCMT SCUBA-2 feed optics. 



 

 
 

 

FTS-2 uses a dual-input, dual-output Mach-Zehnder interferometer configuration
6
 which allows 2 ports to be placed on 

the sky for atmospheric cancellation. A linear schematic of the FTS-2 optics for one port of the interferometer is shown 

in Fig. 2. A pickoff mirror intercepts one quadrant of the SCUBA-2 FOV near an intermediate image plane outside the 

telescope elevation bearing. Mirror FM2_1 folds the beam downwards and creates an image after the first beamsplitter 

(BS), minimizing the beamsplitter diameter. Mirror FM1_3 folds the beam at the breadboard level and forms a pupil 

image at the apex of the moving rooftop mirrors (RT) when the interferometer is at ZPD. After reflection from the RT 

mirrors, fold mirrors FM1_4 and FM2_2 return the beam to the elevation bearing level and reproduce the input pupil and 

image at the required positions before the return mirror feeds the beam back to the SCUBA-2 feed optics at N1. 
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Fig. 2. Simplified optical schematic of FTS-2 for one port (not to scale). Beam diameters at the beamsplitters (BS) are kept 

as small as possible. The sizes and positions of the telescope pupil and image at the telescope elevation bearing are 

reproduced at the output of the FTS, taking into account the thickness of the system (B). 

Since the JCMT optical and structural framework designs are already fixed, the FTS-2 optical and mechanical designs 

are highly interdependent and tightly constrained. In order to fit the optics in the available space, the interferometer 

design is folded vertically
7
 as shown in Fig. 3.  

 

Fig. 3. Folded optical layout of FTS-2 at the mounting location on the SCUBA-2 N1 mirror support framework. The FTS-2 

mechanical framework is hidden for clarity. 



 

 
 

 

It is impossible with the existing SCUBA-2 feed optics to achieve the spectral resolution design goal over the entire 

SCUBA-2 field of view and optimizing the resulting tradeoff between FOV and spectral resolution within the constraints 

imposed by the fixed space envelope has proven to be a challenge.  

Optimization of the optical design was done in Zemax taking into account the physical constraints of the available space 

envelope. With the constraints mentioned above and the limited mounting space, the maximum FOV is ultimately 

limited by the maximum practical mirror diameters (roughly 400 mm diameter) to approximately 5 arcmin
2
. 

3. MECHANICAL DESIGN 

Mounting the 16 FTS-2 mirrors in a compact folded configuration without creating any mechanical or optical 

interference with the existing JCMT and SCUBA-2 systems was a major challenge in the mechanical design. Not all the 

optical components could be mounted directly to the optical breadboard, so a framework design was adopted to support 

the upper optics as well as allow the pickoff and return mirrors to be retracted from the SCUBA-2 beam when not in use. 

A Newport damped optical breadboard forms the base of the system and provides isolation from telescope vibration, as 

well as a flat mounting surface for all of the FTS-2 hardware. The breadboard will be supported by seven adjustable feet 

when mounted on the JCMT N1 support framework. 

3.1 Mechanical framework 

A tubular 6061-T6 aluminum framework will support all of the FTS-2 hardware which is not on the breadboard level, 

including the beamsplitters, upper fixed mirrors, pickoff and return mirrors, and the retraction assembly. The framework 

will be bolted to the optical breadboard and protective covers will be fitted to the outside to prevent damage and dust 

accumulation. The asymmetrical design of the framework avoids interference with the SCUBA-2 beam and the JCMT 

primary mirror backing structure while maintaining high rigidity. The framework sub-assemblies will be welded 

separately and then bolted together, in order to facilitate shipping of the instrument. Since the framework will measure 

roughly 2 m x 0.6 m x 1.3 m, it will be disassembled into several sections which can be packaged flat for shipping to the 

JCMT. The framework is shown in Fig. 4. 

 

 

Fig. 4. FTS-2 mechanical framework mounted on the optical breadboard. Optics are hidden for clarity. 



 

 
 

 

3.2 Mirror mounts 

Maximizing the FTS-2 field of view requires mirrors with diameters up to 400mm within the interferometer. The mass 

for each of these mirrors is expected to be in the range of three to six kilograms. The mirror mounting features must be 

compact due to the proximity of the mirrors to each other, particularly the pickoff and return mirrors and the rooftop 

mirrors. As there are no suitable commercially available mirror mounts, the FTS-2 mirror mounts were custom designed. 

The mirror mount design incorporates a spherical roller bearing for a pivot. A roller bearing was chosen over a plain 

spherical bearing for the reduced friction, which allows for smoother adjustment. The spherical bearing is fastened into a 

bracket plate, with the centre of the mirror hanging from a bolt passing through the bearing. If required, a third axis of 

adjustment (translation) can be obtained by inserting shims in between the bolt and the mirror. The bracket plate also 

houses the two adjusters necessary for the elevation and azimuth adjustment of the mirror, and a tensile spring which 

ensures the stiffness of the assembly and forces the mirror to return to its position following a shock.  

To prevent the adjuster tips from scarring the aluminum mirror, two steel inserts are integrated into the mirror. The 

elevation insert has a V-groove to prevent rotation of the mirror about the axis of the spherical bearing. The elevation 

adjuster was chosen for this function as the moment induced by the mirror’s weight acts on it and thus it will provide 

more stability. The machining of the bracket plate is minimal, making this design a very cost-effective solution. Fig. 5 

depicts an assembled mirror mount featuring two Zaber Technologies
8
 NA11-16B motorized adjusters and a 

compression spring assembly. 

 

Fig. 5. Spherical bearing mirror mount, showing a) spherical bearing, b) bracket plate, c) tensioning spring, d) and e) 

motorized adjusters. 

The spherical bearings allow an 8° range of adjustment in each axis. The static and dynamic loading are well below the 

ratings for the bearings, rendering the bearings maintenance free. Testing in the lab using a small telescope
9
 has 

demonstrated the resolution to be on the order of 0.1 arc seconds per actuator microstep. The adjustment remains very 

smooth and predictable at the arc second level, and the mirror returns to its desired position when subjected to normal 

handling shock. This design could be easily adapted to other applications requiring large mirrors. 

3.3 Linear translation stage 

The FTS-2 rooftop mirrors are displaced by an Aerotech ALS5000 series linear motor translation stage
10

 with 450 mm of 

travel. The brushless, non-contact linear servo motor features zero backlash and the stage metrology is based on a non-

contact Heidenhain linear encoder. The stage has integral limit transducers to prevent driving the moving platform 

beyond the end of travel. Accelerations of 30 m/s
2
 and velocities of 2 m/s can be achieved with a maximum permissible 

load of 135 kg, easily accommodating the motion profiles for the FTS-2 rooftop mirror masses. 



 

 
 

 

3.4 Rooftop mirror assembly 

The rooftop mirrors sit atop the Aerotech translation stage moving platform, which moves to provide varying optical 

path difference between the interferometer beams. Each rooftop mirror sub-assembly supports one mirror from each side 

of the interferometer. This allows one set of mirrors to be removed for alignment of the remaining interferometer mirrors 

and then reinstalled with very little disturbance to their alignment.  

3.5 Retraction mechanism 

It is necessary for the FTS-2 pickoff and return mirrors to be retracted from the SCUBA-2 beam when FTS-2 is not in 

operation. These mirrors also require remote actuators for periodic adjustment of the alignment to the SCUBA-2 beam. 

The pickoff mirror retraction assembly consists of a rail and carriage system, a ball screw, and a Zaber Technologies 

stepper motor. The ball screw and stepper motor combination will allow the mirrors to be positioned in the beam with a 

resolution of 0.1 µm. The rail will be bolted to the FTS-2 framework at a spacing of 60 mm to minimize deflection and 

produce superior repeatability. The Zaber motor will be driven in a step-back fashion to compensate for backlash such 

that it will always approach its destination from the same direction. 

4. OBSERVING MODES 

Atmospheric emission is the dominant source of radiant loading at submillimetre wavelengths. Moreover, variations in 

atmospheric emission are particularly problematic for an FTS where, upon Fourier transformation, they introduce 

spectral features into the resulting spectrum. By utilizing the second input port of the Mach-Zehnder FTS to view an 

adjacent background sky position, variations in atmospheric emission can, to first order, be cancelled by the subtractive 

properties of the FTS. Moreover, this cancellation results in a dramatic reduction in the dynamic range required in the 

resulting interferogram. Also, the dual output ports of the FTS provide complementary data which can further reject 

common mode noise present in the often hostile telescope environment, resulting in a factor of �2 increase in S/N. 

Proper selection of a background location is crucial to the success of this technique; the location of the second input port 

must be carefully considered in the observation planning. 

Using dual input ports, the moving mirror may be scanned continuously (Rapid-Scan or RS) or stepped discretely (Step-

and-Integrate or SI). With RS, the resulting interferograms will not be sampled uniformly in optical retardation since the 

SCUBA-2 data acquisition system is independent of the FTS-2 scanning mechanism. This will necessitate the use of a 

non-uniform FFT or an interpolation process in the processing pipeline. Algorithms to cope with this problem have 

already been developed for the SPIRE spectrometer
11

 by members of our group. 

We are also investigating the potential use of the step-and-integrate operating mode to improve observational efficiency 

and atmospheric noise rejection. In this mode, the optical path difference in the interferometer is incremented in discrete 

steps and data is read out only when the mirrors are stationary, thereby ensuring that the interferogram is sampled on a 

uniform position grid. This mode could in principle be used with the single-port mode in conjunction with the SCUBA-2 

DREAM mode
12

, however, the baseline plan is to use the Rapid Scan dual-port atmospheric cancellation technique. 

4.1 Undersampling 

Since the SCUBA-2 filters will have extremely high out-of-band rejection, the interferograms may be sampled sparsely 

and the resulting aliasing of the spectra can be easily removed. This will allow high resolution spectra to be obtained in 

shorter scan times, which will reduce the effects of sky rotation and atmospheric noise. By proper selection of the optical 

path sampling interval, both the 450 and 850 µm bands can be aliased simultaneously without any loss of information 

within the bands.  

Normal Nyquist sampling requires that the interferograms be sampled every 0.02 cm of OPD, but this interval can be 

increased to 0.1 cm through the use of undersampling, which translates to a factor of 5 increase in acquisition speed. We 

have tested this technique with the U of L FTS
13

 using both the normal rapid-scan and the step-and-integrate modes
7
.  

4.2 Resolution 

The FTS-2 instrument has a continuously variable resolution ranging from �� ~ 0.5 to 0.006 cm
-1

. (The translation stage 

will allow slightly better resolution if some vignetting of the outer pixels can be tolerated.) While the FTS-2 resolution 

can be adjusted arbitrarily over the full range, the baseline plan is to provide only two resolution modes. The maximum 

resolution will be used for spectral line studies, while a lower resolution of ~0.1 cm
-1

 will be used for Spectral Energy 



 

 
 

 

Distribution (SED) measurements
7
. With the fixed detector frame rate, higher resolution comes at the expense of longer 

acquisition times. 

4.3 Baseline Observing Modes 

FTS-2 observations can be classified as either SED measurements or spectral line studies. SED measurements only 

require a few spectral bins across a filter bandpass in order to characterize the continuum curvature, and can be 

accomplished with low resolution (~0.1 cm
-1

) scans. On the other hand, spectral line studies require the maximum 

possible resolution. By grouping all observations into these two resolution categories, the processing and observation 

planning can be simplified. 

In the low-resolution SED mode, scans can be double-sided without seriously affecting observing efficiency. With fully 

double-sided scans, the phase correction processing step is simplified greatly. The baseline plan is to implement the SED 

mode using the dual-port configuration to provide atmospheric correction. The nominal operating mode will be RS; the 

aliased SI mode combined with DREAM will be investigated during commissioning. 

In the high-resolution spectral line mode, scans must be single sided to maximize the use of the linear stage travel and 

minimize the scan acquisition time. A short double-sided scan will provide phase information for the phase correction 

algorithm. The dual-port configuration will be used to provide atmospheric correction.  

For dual-band operation, the acquisition time is limited by the 25 cm
-1

 Nyquist frequency for the 450 �m band. If only 

the 850 �m band is needed, then the acquisition time (and cube size) is reduced due to the lower 15 cm
-1

 Nyquist 

frequency. A summary of the acquisition times and interferogram lengths is given in Table 1. 

Table 1. Scan parameters for the SED and Spectral Line modes. 

SED Spectral Line  

Dual Band 850 �m Dual Band 850 �m 

Resolution ~0.1 cm
-1

 ~0.006 cm
-1

 

Scan type Double-sided Single-sided 

Phase correction Simple Full 

Scan mode RS (SI) RS 

Total Travel (cm OPD) 6+6 100+6 

Velocity (cm/s OPD) 4 6.6 4 6.6 

Scan time (s) 3 1.8 26.5 15.9 

Frames  605 363 5300 3180 

4.4 Mapping 

Mapping with FTS-2 will be complicated by vignetting effects and calibration issues with off-axis pixels. While 

correction of these effects should be possible after commissioning tests, mapping of extended regions will require post-

processing of the spectral data by the observer. 

5. SOFTWARE 

As an ancillary instrument, FTS-2 must be delivered with control and data reduction software which interfaces with the 

existing SCUBA-2 and JCMT systems. Data reduction code based on the SPIRE system
11

 has been developed for FTS-2, 

and custom control software has been written to control the translation stage and actuators.  

5.1 Data reduction pipeline 

Data reduction for SCUBA-2 and its ancillary instruments FTS-2 and POL-2 will be automated by the use of a data 

reduction pipeline. The main SCUBA-2 pipeline
14

 is written in object-oriented Perl. The pipeline parses ‘recipes’ and 

calls appropriate ‘primitive’ functions in various algorithm ‘engines’. Since the implementation of the algorithm engines 

is independent of the pipeline itself, the FTS-2 algorithm engine can be written in Java to exploit existing SPIRE code.  



 

 
 

 

The Java FTS-2 data reduction algorithm engine consists of two major parts: an interface layer and a core layer. The 

interface layer provides a message interface for the SCUBA-2 data reduction pipeline to invoke the functions of the core 

layer. Both DRAMA
15

 and SOAP messaging interfaces are supported. The core layer is made up of five independent 

modules: I/O, Interpolation, Phase Correction, FFT, and the Quick Look (QL) display system. 

The FTS-2 algorithm engine uses a multi-tier structure (see Fig. 6) consisting of three separate modules (referred to as 

‘actions’ for DRAMA, or ‘operations’ for SOAP):   

• set_parameters - set the data reduction parameters 

• data_reduction - perform the core numerical computation of FTS-2 data reduction 

• exit  - stop FTS-2 Engine and exit 

From the perspective of the Pipeline, each action or operation has a corresponding primitive.  

 

Fig. 6. FTS-2 algorithm engine messaging overview. 

The SCUBA-2 DR pipeline calls the appropriate algorithm engine for the current instrument when the pipeline detects a 

new data file either from the Data Acquisition System (on-line mode) or from the data archive (off-line mode). After the 

algorithm engine completes the relevant tasks or exits, the SCUBA-2 data reduction pipeline regains control of the data 

flow. Fig. 7 shows a schematic of the FTS-2 data reduction module, which reduces raw interferogram data from the 

SCUBA-2 pipeline into spectral data files as well as reduced data for the SCUBA-2 Quick Look display system. 

 

Fig. 7. FTS-2 data reduction engine modules. 



 

 
 

 

In order to separate the core numeric processing from both the data access layer and the message processing layer, the 

FTS-2 data reduction module is implemented as a Java class: ca.uol.aig.fts.drpipeline.DRPipeline. This class integrates 

I/O, Interpolation, Phase Correction, FFT and Quick Look into a pipeline to fully process FTS-2 interferogram data. 

The FTS-2 engine I/O function of is implemented by Java class ca.uol.aig.fts.io.NDFIO, the interpolation function is 

implemented in the Java class ca.uol.aig.fts.fitting.CubicSpline, the phase correction function is implemented in the Java 

class ca.uol.aig.fts.phasecorrection.PhaseCorrection, and FFT processing is implemented in the classes RealDoubleFFT, 

RealDoubleFFT_Even, and RealDoubleFFT_Odd of the Java package ca.uol.aig.fftpack.  

The FTS-2 engine uses four external Java libraries: a Java version of FFTPack
17

, Jama
18

, StarJava
19

, and a Java version 

of DRAMA. The Java version of FFTPack has been translated from the original FORTRAN code by the FTS-2 group. 

FFTPack is a well-known package of FORTRAN subprograms for the fast Fourier transform of periodic and other 

symmetric sequences, including complex, real, sine, cosine, and quarter-wave transforms. JAMA is a basic linear algebra 

package for Java developed by NIST. Two other required Java libraries are StarJava and DJAVA (Java version of 

DRAMA).  

5.2 Control systems 

Coordination and synchronization of the JCMT instruments, Observatory Control System
20

 (OCS) and Data Acquisition 

System are performed by the JCMT Real Time Sequencer
21

 (RTS). The FTS-2 RTS client will receive commands from 

the OCS and synchronizes their execution with the RTS master clock. In this way, the motion of the FTS mechanisms 

can be controlled by the automated OCS and the interferometer optical path difference can be read out synchronously 

with the 200 Hz SCUBA-2 frames. The JCMT uses a generalized software interface for all RTS compliant instruments, 

which significantly simplifies the control software development for the FTS-2 system. The FTS-2 RTS client software 

will use the RTAI
22

 real-time Linux operating system. 
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Fig. 8. Schematic of the FTS-2 control system interfaces with the JCMT OCS and RTS systems. 



 

 
 

 

5.3 Data rate 

Data rates for the FTS-2 instrument will not exceed those for normal SCUBA-2 observations. In the RS mode, frames 

will be stored at 200 Hz before being reduced by the pipeline. Depending on the spectral range in the stored spectral 

cubes, the maximum reduced data volume before averaging will range from 0.25 to 0.5 times the raw data volume. 

5.4 Processing speed 

The FTS-2 engine was benchmarked on a Linux Fedora platform with a 2.8Ghz P4 CPU and 1 GB RAM. The 

benchmarks do not include any time that the ORAC-DR pipeline would take to call the algorithm engine. The phase 

correction function (PCF) decays very quickly at frequencies far from DC. Larger PCF lengths produce more accurate 

results, but require more computation time. Usually, in order to reduce the calculation time, the PCF is kept as short as 

possible. In the case of FTS-2, the PCF size never needs to be larger than 160 points. Benchmark results for the worst-

case scenario (160 point PCF) are given in Table 2, showing that real-time processing should be possible in all observing 

modes.  

 

Table 2. Processing benchmarks 

Interferogram Length 

(points) 
Benchmarks (s) Total Time (s) 

Scan Mode 
Short 

Wing 

Long 

Wing 
Total I/O(R/W) 

Interpola

tion 

Phase 

Correction 
FFT Acquisition Processing 

SED 

850 Band 
180 180 360 0.19/0.11 0.17 0.88 0.045 1.80 1.40 

SED 

Dual Band 
300 300 600 0.21/0.15 0.28 1.26 0.057 3.00 1.96 

Spectral Line 

850 Band 
180 3000 3180 0.27/1.04 0.85 6.48 0.406 15.90 9.05 

Spectral Line 

Dual Band 
300 5000 5300 0.36/1.75 1.39 10.54 0.670 26.50 14.71 

 

6. CONCLUSION 

The FTS-2 project completed the PDR stage in July 2005 and the CDR is scheduled for June 2006. Delivery of the 

instrument to the JCMT will occur in mid 2007, and commissioning will occur after the SCUBA-2 commissioning phase 

is complete. 
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Appendix D 
 
Suggested readings on Fourier transform spectroscopy 
 
 
Introductory Textbooks: 
 
Eugene Hecht. Optics. Addison Wesley, fourth edition, (2002). 
 
P. R. Griffths and J. A. Haseth. Fourier Transform Infrared Spectrometry. John 
Wiley and Sons, New York, (1986). 
 
J. F. James, A students guide to Fourier transforms, Cambridge University Press 
(2002). 
 
Advanced Textbooks: 
 
R. J. Bell. Infrared Fourier Transform Spectroscopy. Academic Press, New York, 
(1972). 
 
Sumner P. Davis, Mark C. Abrams, and James W. Brault. Fourier Transform 
Spectroscopy. Academic Press, first edition, (2001). 
 
J. E. Chamberlain. The Principles of Interferometric Spectroscopy. John Wiley 
and Sons: Chichester, England (1979). Edited by G. W. Chantry and N. W. B. 
Stone. 
 
E. O. Brigham. The Fast Fourier Transform. Prentice-Hall Inc., (1974). 
 
M. Born and E. Wolf. Principles of Optics, Cambridge University Press, (1980). 
 
L. Mertz. Transformations in optics. New York: Wiley, (1965). 
 
D. C. Champeney. Fourier Transforms and their Physical Applications. Academic 
Press: St. Louis, MO (1973). 
 
R. M. Bracewell. Fourier Transforms and Its Applications. McGraw-Hill Book Co: 
New York, NY (1965). 
 
 
 
 
 
 
 
 



Historical Papers: 
 
Albert A. Michelson. On the application of interference methods to spectroscopic 
measurements. Philosophical Magazine, 34:280, (1892). 
 
H. Rubens and R. W. Wood. Focal isolation of long heat-waves. Philosophical 
Magazine, 21:249–261, (1911). 
 
H. Nyquist. Certain topics in telegraph transmission theory. Transactions of the 
American Institute of Electrical Engineers, 47:617 – 644, (1928). 
 
P. Fellgett. A propos de la theorie du spectrometre interferentiel multiplex. 
Journal of Physics Radium, 19:187, (1958). 
 
P. Jacquinot. New developements in interference spectroscopy. Rep. Prog. 
Phys., 23:267–312, (1960). 
 
J Connes, Recherches sur la spectroscopie par transformation de Fourier, PhD 
Thesis Laboraotry Aime Cotton, Bellevue, France, (1960). 
  
J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of 
complex fourier series. Math. Comput., 19:297, (1965). 
 
Michael L. Forman. Fast Fourier-Transform Technique and it’s Application to 
Fourier Spectroscopy. Journal of the Optical Society of America, 56(7):978, 
(1966). 
 
M. L. Forman, W. Steel, and G. A. Vanasse. “Correction of Asymmetric 
Interferograms Obtained in Fourier Spectroscopy.” Journal of the Optical Society 
of America, 56(1):59–64 (1966). 
 
L. Mertz. Rapid scanning fourier transform spectroscopy. J. Phys. Coll. C2, 
Suppl. 3-4, 28:88, (1967). 
 
R. H. Norton and R. Beer. New apodizing functions for fourier spectrometry. 
Journal of the Optical Society of America, 66:259 – 264,  (1976). 
 
F. J. Harris. On the use of windows for harmonic analysis with the discrete fourier 
transform. In Proceedings of the IEEE, volume 66, pages 51–83, (1978). 
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