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CHAPTER 4 

THERMAL CONDUCTION 
 

4.0 The Error Function 

 

Before we start this chapter, let’s just make sure that we are familiar with the error function erf a.  

We may need it during this chapter. 

 

Here is a graph of the gaussian function .
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I have chosen the coefficient π/1  so that the area under the curve, from ∞−  to ∞+ is 1. 

The maximum value, which occurs at x  =  0, is 5642.0/1 =π , and it is easy to show that the 

half width at half the maximum is .8326.02ln =    Also of some interest (though not particularly 

in this chapter) is the square root of the second moment of area around the y-axis.  In a mechanical 

context this would be called the radius of gyration.  In a statistical context it would be called the 

standard deviation.   Either way, its value is .7071.02/1 =   We shall meet the gaussian function 

again in Chapter 6.  
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In the present chapter we shall need to make use of the error function erf a.  This is the area under 

the gaussian curve from :to axax +=−=  

 

.
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The area outside the limits ax ±= , which is the area under the two “tails” of the gaussian function, 

is sometimes called the complementary error function: 

 

.erf1erfc aa −=       4.0.3 

 

It will be clear that erf a goes from 0 to 1 as a goes from 0 to infinity.  Note also that  

 

               erfc (one standard deviation)   =   0.3173 

               erfc (two standard deviations) =   0.0455. 

 

Here are graphs of erf a (continuous line) and erfc a (dashed line) versus a. 
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4.1   Introduction 

 

While the subject of thermal conduction is an important one, and obviously a proper topic in the 

theory of heat, it is not really part of the great logical structure of thermodynamics, not does it 

require a wide or deep knowledge of thermodynamics to understand it, at least at an introductory 

level.  In other words, this chapter is more or less a stand-alone chapter.  It is not necessary to 

understand earlier chapters to understand this one; nor, if your primary interest is in 

thermodynamics, is it necessary to understand this chapter before proceeding to later ones.  That is 

– if you wish −  you can skip this chapter without compromising your understanding of any later 

ones. 

 

 

4.2   Thermal Conductivity   

   

 

 

 

 

 

 

 

 

 

 

Figure IV.1 shows heat flowing at a rate dQ/dt along a bar of cross-sectional area A of material.   

There is a temperature gradient along the length of the bar (which is why heat is flowing down it).  

At a distance x from the end of the bar the temperature is T;  at a distance x  + δx it is T  +  δT.  

Note that, if heat is flowing in the positive direction as shown,  δT must be negative.  That is, it is 

cooler towards the right hand end of the bar. The temperature gradient dT/dx is negative. Heat 

flows in the opposite direction to the temperature gradient.   

 

The ratio of the rate of heat flow per unit area to the negative of the temperature gradient is called 

the thermal conductivity of the material: 

 

     .
dx

dT
KA

dt

dQ
−=      4.2.1 

 

I am using the symbol K for thermal conductivity.  Other symbols often seen are k or λ.  Its SI unit 

is W m
−1

 K
−1

. 

 

I have defined it in a one-dimensional situation and for an isotropic medium, in which case the heat 

flow is opposite to the temperature gradient.  One can imagine that, in an anisotropic medium, the 

rate of heat flow and the temperature gradient may be different parallel to the different 

crystallographic axes.  In that case the heat flow and the temperature gradient may not be strictly 

antiparallel, and the thermal conductivity is a tensor quantity.  Such a situation will not concern us 

in this chapter. 

dQ/dt 

T T + δT 

A 

x + δx 

FIGURE IV.1 

x 
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If, in our one-dimensional example, there is no escape of heat from the sides of the bar, then the 

rate of  flow of heat along the bar must be the same all along the bar, which means that the 

temperature gradient is uniform along the length of the wire.  It may be easier to imagine no heat 

loss from the sides than to achieve it in practice.  If the bar were situated in a vacuum, there would 

be no loss by conduction or convection, and if the bar were very shiny, there would be little loss by 

radiation. 

 

Order-of-magnitude values of the thermal conductivities of common substances are 

 

Air             0.03   W m
−1

 K
−1 

Water         0.6 

Glass          0.8 

Fe             80 

Al           240 

Cu          400 

 

It is easy to imagine how heat may be conducted along a solid, with the vibrations of the atoms at 

one end of the solid being transmitted to the next atoms by one atom nudging the next, and so on.  

However, it is evident from the table, and in any case is common knowledge, that some substances 

(metals) conduct heat much better than others.  Indeed, among the metals, there is a close 

correlation between the thermal and electrical conductivities (at a given temperature).  This 

suggests that the mechanism for thermal conductivity in metals is the same as for electrical 

conductivity.  Heat is conducted in a metal primarily by electrons. 

 

It would be an interesting exercise to find, from the Web or from other references, the thermal and 

electrical conductivities of a number of metals.  It may be found that thermal conductivities, K, are 

sometimes quoted in unfamiliar “practical” units, such as BTU per hour per square foot for a 

temperature gradient of 1 F° per inch, and converting these to SI units of  W m
−1

 K
−1

 might be a bit 

of a challenge. Electrical conductivities, σ, decrease somewhat with rising temperature (so do 

thermal conductivities, but rather less so), so it would be important to find them all at the same 

temperature.  Then you could see whether the ratio σ/K  is indeed the same for all metals at a 

given temperature.  This is known as the Wiedemann-Franz Law.  First-order theory (which we do 

not give here) predicts that  

 

        .KW1044.2
3
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Here k is Boltzmann’s constant and e is the electronic charge. This prediction is found to be obeyed 

well at room temperatures and higher, but at low temperatures the electrical conductivity increases 

rapidly with lowering temperature, and the ratio starts to fall well below the value predicted by 

equation 4.2.2, approaching zero at 0 K. 

   

The reader may be familiar with the following terms in electricity 
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Conductivity    σ 
Conductance    G 

Resistivity        ρ 
Resistance        R      

 

They are related by  G  =  1/R,   σ  =  1/ρ,   R  =  ρl/A,   G  =  σA/l, 

 

where l and A are the length and cross-sectional area of the conductor.  The reader probably also 

knows that resistances add in series and conductances add in parallel. 

 

We may define some analagous quantities related to heat flow.  Thus resistivity is the reciprocal of 

conductivity, resistance is l/A times resistivity, conductance is A/l times conductivity, and so on.  

These concepts may come in useful in the following genre of problems beloved of examiners. 

 

A room has walls of area A1, thickness d1, thermal conductivity K1, a door of area A2, thickness d2, 

thermal conductivity K2, and a window of area A3, thickness d3, thermal conductivity K3,  The 

temperature inside is T1 and the temperature outside is T2.   What is the rate of heat loss from the 

room? 

 

We have three conductances in parallel:  
K A

d

K A

d

K A

d

1 1
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3

, and , and so we have 
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
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


++=     4.2.3  

 

Of course, the problem need not be exactly like that.  Perhaps you are given the rate of heat loss 

and asked to find the area of the window.  But you get the general idea, and you can probably 

concoct a few examples yourself.  The rate of heat flow is analogous to the current, and the 

temperature difference is like the EMF of a battery. 

 

 

4.3   The Heat Conduction Equation 

 

The situation described in Section 4.2 and in figure IV.1 was a steady-state situation, in which the 

temperature was a function of x but not of time.  We are now going to consider a more general 

situation in which the temperature may vary in time as well as in space.   
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FIGURE IV.3 

x 

∂

∂

T

x
 

∂

∂

∂

∂
δ

T

x

T

x
x+

2

2
 



 6 

In this case the temperature gradient is written as a partial derivative, 
∂

∂

T

x
 and is not uniform down 

the length of the rod.  We'll suppose it is 
∂

∂

T

x
  at x  and 

∂

∂

∂

∂
δ

T

x

T

x
x+

2

2
 at x  + δx. 

 

Consider the heat flow into and out of the portion between x and x  +  δx.   The rate of flow into this 

portion at x  is −KA
T

x

∂

∂
, and the rate of flow out at x  +  δx is  ,

2

2









δ

∂

∂
+

∂

∂
− x

x

T

x

T
KA  so that the net 

flow of heat into that portion is KA
T

x
x

∂

∂
δ

2

2
.  This must be equal to C A x

T

t
ρ δ

∂

∂
,  where ρ is the 

density (and hence ρAδx is the mass of the portion), and C is the specific heat capacity. 

 

Therefore     C
T

t
K

T

x
ρ

∂

∂

∂

∂
=

2

2
.     4.3.1 

 

This can be written         
∂

∂

∂

∂

T

t
D

T

x
=

2

2
,     4.3.2 

 

where                        D
K

C
=

ρ
      4.3.4 

 

is the thermal diffusivity (m
2
 s

−1
). 

 

Equation 4.3.2 is the heat conduction equation.  In three dimensions it is easy to show that it 

becomes 

 

      .2TDT ∇=&      4.3.5 

 

 

 

4.4   A Solution of the Heat Conduction Equation 

 

Methods of solving the heat conduction equation are commonly given in courses on partial 

differential equations.  Here we shall look at a simple one-dimensional example. 

 

A long copper bar is initially at a uniform temperature of 0
o
C.  At time t = 0, the left hand end of it 

is heated to 100
o
C.   Draw graphs of temperature versus distance x from the hot end of the bar (up 

to x = 100 cm) at t = 4, 16, 64, 256 and 1024 seconds.   Draw also a graph of temperature versus 

time at x = 5 cm, up to 1024 seconds.   Assume no heat is lost from the sides of the bar. 

 

Data for copper: K  =  400 W m
−1

 K
−1 

   C  =  395  J kg
−1

 K
−1

  

   ρ   =  8900  kg m
−3

 

whence  D  =  1.137  ×  10
−4

 m
2
 s

−1
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The equation to be solved is   D
T

x

T

t

∂

∂

∂

∂

2

2
= .      4.4.1 

 

From the form of this equation, it is obvious (once it has been pointed out!) that a solution could be 

found in which T(x, t) is solely a function of x
2
/t, or, for that matter, x/t

1/2
.  

 

Thus, let    u x t= / ,/1 2       4.4.2 

 

and you will see that equation 4.4.1 reduces to the second order total differential equation 

 

     D
d T

du

u dT

du

2

2 2
= − .     4.4.3 

 

Let T dT du' /= , and it becomes even easier − a first order equation: 

 

     D
dT

du
uT

'
' .= − 1

2
     4.4.4 

 

Upon integration, we obtain 

 

     ln ' ln ,T
u

D
A= − +

2

4
     4.4.5 

 

where ln A is an integration constant, to be determined by the initial and boundary conditions.  

(What are the dimensions of A?)      

 

That is,    T A u D' exp / ( ) .= − 2 4     4.4.6 

 

We have to integrate again, with respect to u: 

 

     ( )[ ] .4/exp 2 duDuAT ∫ −=     4.4.7 

 

Now, T = 100 
o
C at x = 0 for any t > 0.  That is, T =  100 for u = 0. 

 

And  T  =  0 
o
C at t = 0 for any x > 0.     That is, T = 0 for u = ∞. 

 

Therefore         ( )[ ] .4/exp0100
0

2
duDuA∫∞ −=−     4.4.8 

 

The integral is slightly difficult though well known.  I'll just state the answer here; it is − πD . 

From this, we find that the integration constant is 

 

     A   =    −5284  K m
−1

 s
1/2

.    4.4.9 
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We now have   ( )[ ] .4/exp),(100
0

2

2/1
duDuAtxT

xt∫ −
−=−    4.4.10 

 

The error function erf(r) is defined by 

 

     ∫ −
π

=
r

dssr
0

2 ,)exp(
2

)(erf     4.4.11 

 

so that equation 4.4.10 can be written 
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



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x

Dt

x
DAtxT   4.4.12 

 

This function is easy to plot provided that your computer will give you the erf function.  The 

solutions are shown in figures IV.4 and 5. 
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4.5   Heat Conduction in Gases and Liquids. 

 

    The following method has been used successfully for precise measurements of the heat 

conductivities of gases and liquids, and it also serves to provide the reader with a simple exercise. 
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   A gas is contained in the spaces between two long coaxial metal cylinders, of radii a and b.  An 

electric wire passes along the axis of the cylinders.  It is heated by an electric current, so that the 

rate of production of heat per unit length, Q&   (W m
−1

) can be determined from its resistance and the 

current through it.  This heat is eventually conducted through the gas from the inner cylinder to the 

outer cylinder.  The temperatures,  Ta and  Tb of the two cylinders are measured. 

 

   Show that the thermal conductivity is given by 

 

)(2

)/ln(

ba TT

abQ
K

−π
=

&

      4.5.1 

 

In a real experiment, minor modifications should be made to minimize and correct for heat losses 

through the ends of the cylinders, and transference of heat by convection. 

 

 

 

 

 


