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CHAPTER 4 

Paraboloids 

 

4.1  Circular and Elliptic Paraboloids. 

 

   Imagine the parabola 

 

qzx 42    ,                                                        4.1.1 

 

which is a parabola whose semi latus rectum is of length 2q. 

 

I have drawn it in figure IV.1 for .14 q   The distance between vertex and focus is q, 

and the length of the latus rectum is 4q. 
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FIGURE IV.1 

 

   Rotate this parabola about the vertical axis.  You obtain a paraboloid of circular cross-

section, or a circular paraboloid  - like a telescope mirror (not Ritchey-Chrétien!), or a 

stirred cup of coffee. 

 

   Its equation is   

 

qzyx 422  .         4.1.2 
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If we introduce two lengths a and h by 
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the equation to the circular paraboloid becomes 
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Of course a paraboloid need not be circular in cross-section, and the equation 
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represents an elliptic paraboloid.  It cannot be obtained simply by rotation of a parabola.  

 

   If we were to translate the origin of the coordinate axes (without rotation),  we would 

introduce terms in x, y and z as well as a constant term into the equation.  If, further, we 

were to rotate the coordinate axes about the z- axis, we would introduce a term in xy. 

 

    Thus an equation of the form 
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(with no terms in z2, yz or zx) represents a paraboloid in which the z axis is parallel to the 

symmetry axis of the paraboloid.  This will be useful to recall in Section 7.1 of Chapter 7. 

 

   Neither a parabola nor a paraboloid has a centre of symmetry.  Equation 4.1.6 contains 

an odd power of z.  It is not unchanged if you substitute z  for z. 

 

 

 

4.2  Hyperbolic Paraboloid 

 

   The elliptical paraboloid described by equation 4.1.6 is easy to visualize.  Slightly less 

easy (but by no means unreasonably difficult) to visualize is a hyperbolic paraboloid, 

described by the equation 
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This is saddle-shaped.  

 

 In the plane y  =  0, the cross section  is a nose-down parabola similar to figure IV.1, 

with semi latus rectum of length 
h

a 2

.  

 

  In the plane x  =  0, the cross-section is  a nose-up parabola with semi latus rectum of 

length 
h

b2

  .  

  In the plane z  =0,  the cross-section is two straight lines, x
a

b
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asymptotes to the hyperbola 1
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  In the plane hz
2
1 , the cross-section is the hyperbola .1
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   In the plane hz
2
1  , the cross-section is the hyperbola .1
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Like the circular and elliptical paraboloids, the hyperbolic paraboloid is not a central 

quadric. 

 


