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   Chapter 3.    A Brief History of  the Lommel-Seeliger Law. 
 
Introduction. The use of the Lommel-Seeliger law is an enduring aspect of planetary photometry. It 
has the advantage of analytical simplicity as well as, in many cases, being an excellent first 
approximation to diffuse reflection. In spite of its shortcomings, in particular its inability to display an 
opposition effect, it is still very much in use today in applications as diverse as lightcurve inversion 
(the determination of asteroid poles and shapes from their lightcurves (Kaasalainen, 2003)), to the 
prediction of photometric signatures of unresolved ringed extrasolar planets (Arnold & Schneider, 
2004). Indeed, it is the topic of exoplanets which has recently generated an interest in planetary 
photometry by astronomers who would otherwise not be concerned with the subject. 
 
Here we present the Lommel-Seeliger law in some detail and as a result point out the existence and 
consequences of an insidious error, which has percolated down through the l iterature. 
 
Description.  The Lommel-Seeliger law is based on a simple physical model of diffuse reflection. As 
such it is a single scattering model in which the scattering is isotropic. 
 
The model assumes that light penetrates the surface, being attenuated exponentially as it does so. Here 
attenuation refers to any process which reduces the brightness of a beam of light, and thus includes 
scattering and absorption. Each element of volume encountered by the attenuated beam scatters part of 
it isotropically, i.e. equally in all directions into the π4  steradians (the imaginary sphere, if you like) 
surrounding it. Thus, of this diffuse scattered radiation, only half is directed back towards the surface, 
and this fraction will be further attenuated before emerging as diffuse reflected radiation. 
 
 
Derivation.  The following derivation is intended to be more illustrative than entirely rigorous and 
contains a few shortcuts. It is nonetheless correct; for a more robust and general proof see Chapt er 1. 
 
Consider, as shown in Figure 1., a diffuse reflecting (and transmitting) layer of normal optical 
thickness   t , in which the optical thickness includes attenuation by both scattering and absorption. In 
problems of this nature, it is more convenient to work in terms of optical thickness than actual physical 

thickness. Light traversing a path of optical thickness τ  is attenuated by a factor τ−e . 

 
Figure 1.  In this diagram, the incident beam, the line PQ and the reflected beam need not be in the same plane; imagine one half 
rotated about PQ with respect to the other half. The angle between the incident and reflected beams is the (solar) phase angle, 
α . The value of α  is relevant only for anisotropic scattering.  

 
The surface ( 0=τ ) is irradiated by a plane parallel beam of radiant flux density F  at an angle of 

incidence iθ , so that the irradiance is iFE θcos= . We are concerned with the resulting radiance in 

the direction of an angle of reflection rθ  < 90o. Now let iθµ cos0 =  and rθµ cos= and consider the 

layer between τ  and ττ d+ . The incident flux density which has penetrated to this level is 0/ µτ−
Fe . 
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The contribution to the diffuse radiance in the direction µ  by isotropic scattering is thus 
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 where 0ϖ  is the single scattering albedo. This radiation will be further attenuated by 

the factor µτ /−e  before emerging from the surface, so that the contribution to the radiance in the 
direction µ  is  
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Note that dL  is the contribution to the total radiance from the layer resulting from single scattering. 
The Lommel-Seeliger model considers only the scattering of the collimated incident light. It does not 
take into account scattering of diffuse light which has made its way indirectly to the same position by 
being scattered one or more times, i.e. it does not consider multiple scattering. 
 
For a planetary  surface, the layer is “semi-infinite” ( ∞=t ) and the total radiance in the direction µ  is 
 
 

∫
∞

+−= ×
0 0

0 )]11(exp[
4

τ
µµ

τ
πµ

ϖ
d

F
L .    (2) 

 
resulting in 
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and , since the irradiance is 0µFE =  and EfL r= , it follows that the bidirectional reflectance 
distribution function (BRDF) which defines the Lommel -Seeliger reflectance rule is  
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The use of the Lommel-Seeliger model is not restricted to planetary surfaces. For a layer of finite 
optical thickness t  , e.g. an (exo)planetary ring, the reflected radiance is 
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resulting in 
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and by similar reasoning the radiance TL  transmitted through the layer may be determined (Arnold & 

Schneider, 2004). 
 
 
Errors in the Literature. The oldest error which the author has been able to detect dates back to 1916 
in a paper on planetary albedos  by  (no less than) Henry Norris Russell (Russell, 1916). In that paper 
the BRDF is implicitly expressed as  
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in which γ  is a constant. From this Russell derives the directional hemispherical reflectance 
(hemispherical albedo) 
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where it may be seen that the expression in brackets varies monotonically from 0.308 ( 10 =µ ) to unity 

( 00 =µ ) ; he then argues “ Since ( ρ ) can never exceed unity it follows that πγ  cannot be greater 0.5 
nor (the Bond albedo) A  than 0.409.  Hence a planet for which (the geometrical albedo) p  exceeds 
0.25 cannot reflect light in strict accordance with the Lommel-Seeliger law”. 
 
Although this argument sounds entirely plausible, it is wrong. While it is true that  ρ , like any albedo, 

cannot exceed unity, in the case of the Lommel-Seeliger law it cannot exceed 2
1  and therefore the 

maximum value of γ  is π4
1  not π2

1 ; the value of  γ  is π
ϖ
4

0 . Such an error can affect albedo 

calculations by a fact or of two. Unfortunately, this error has filtered down into subsequent publications, 
e.g. Lester, McCall & Tatum (1979), Fairbairn (2002, 2004). The correct properties of the Lommel-
Seeliger law are summarised in Table I. 
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Table I. Properties of the Lommel-Seeliger law for surfaces and spheres. Maximum possible values are shown in parentheses  in 

the first and third columns. np  is the normal albedo and q  the phase integral. 

 
For some applications, the error of a factor of two is of no consequence. In cases where only relative 
magnitudes matter, so that the offset is arbitrary, the factor disappears into the offset. Asteroid 
lightcurve profiles are such examples. 
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