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Chapter 1.  Principles of Planetary Photometry  
 
1. Introduction. 
 
The subject of planetary photometry is, in substantial part, a subset of that branch of 
mathematical physics known as radiative transfer, for which the classical and 
definitive work is that of Chandrasekhar (1960).  
 
Here we present this aspect of the subject in a modern context and although we have 
adhered as much as possible to the symbols, nomenclature and notation of 
Chandrasekhar, the following changes and additions have been made. 
 

(i)  The quantity called by Chandrasekhar intensity I is here called radiance L. 
I make no apology for this since it conforms with modern international 
radiometric standards. 

 
(ii) A plane parallel beam of radiation is specified by its radiant flux density F  

rather than its net flux Fπ , the latter being a more generally defined 
quantity.  

 
(iii)  Shorthands for incident, reflected and transmitted radiation, with 

subscripts i, r and t have been introduced.  
 

(iv)  Reflectance functions in addition to Chandrasekhar’s formulations are 
presented. 

 
2. Radiance and the Equation of Transfer. 
 
Radiance may be regarded as the fundamental quantity of radiative transfer. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. 
 
Consider, as shown in figure 1, an emitting (or reflecting) sur face of area dA which 
emits dP watts of power into solid angle ωd  about the direction of an observer at 
angle θ  to the surface normal vector n of dA, the latter presenting a projected area 

θcosdA  to the observer. The radiance detected by the observer is then 
 

dP  
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θω cosdAd
dP

L =      (1) 

 
Radiance then has the following properties:  
 

It is defined at a point and in a specified direction.  
 
It is independent of the distance from which it is observed 
 
Its SI units are watts per square metre per steradian (W m-2 sr-1). This can be 
interpreted in either of two ways.  Either, it is the power projected into unit 
solid angle from unit projected area of an extended surface (i.e. projected on a 
plane at right angles to the line of sight from the observer); or it is the power 
arriving per unit area at the observer from unit solid angle (subtended at the 
observer) of the extended source.  That these are equivalent is shown in 
reference (2). 

 
If radiance is the fundamental quantity of radiative transfer, then the fundamental law 
is the equation of transfer 
 

ℑ−=− L
ds

dL
κρ

.     (2) 

 

Here 
ds
dL  is the rate of change of radiance with, and in the direction of,  position s in a 

given medium, ρ  is the density of the medium (kg m-3) and κ  is the mass 
attenuation coefficient (m2 kg-1). Here attenuation refers to any process which 
reduces the brightness of a beam of radiation, and so includes absorption and 
scattering. Some authors use the word extinction for attenuation, and some 
(particularly in the field of stellar atmospheres) use the word opacity to refer to the 
mass attenuation coefficient. 
 
Equation (2) could be read as follows: as a beam of radiance L traverses the distance 

sδ  it will be diminished in radiance by the amount sLδκρ  and enhanced by the 
amount sδκρℑ . The quantity ℑ  is called the source function  and, as we shall see, a 
typical problem of planetary photometry is to find a solution for this quantity before 
solving the equation of transfer as a whole. 
 
 
3. Diffuse Reflection and Transmission .  
 
The fundamental problem of planetary photometry is the diffuse reflection and 
transmission of a plane parallel beam of radiation by a scattering medium, which we 
would understand as a planetary atmosphere and/or surface or a planetary layer such 
as the rings of Saturn. Such media may be idealised as locally plane parallel strata in 
which physical properties are uniform throughout a given layer. In such cases we may 
use a hybrid Cartesian and spherical frame of reference in which the Oxy plane is the 
surface and z-axis points in the direction of the surface normal. Directions are then 
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specified by the polar and azimuthal angles ϑ  and ϕ  (“curly theta” and “curly phi”) 
respectively. Further, with problems of this kind, rather than working in actual 
physical distances it is preferable to work in terms of normal optical thickness τ , 
measured downwards from z = 0, such that dzd κρτ −= . Radiation that has traversed 

a path of optical thickness t  is attenuated by a factor of te− . 
 
Using the direction cosine ϑµ cos=  the standard form of the equation of transfer for 
plane parallel media  is 
 

),,(),,(
),,(

ϕµτϕµτ
τ

ϕµτ
µ ℑ−= L

d
dL

   (3) 

 
For a scattering medium, the only contribution to the source function is the scattering 
of that radiation which has been incident on the medium from external sources, so 
that, by totalling the contributions impinging on level τ  from all directions, the 
source function is 
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where p  is the normalised phase function  which determines the angular distribution 

of the scattering. A convenient way to think of p is that ω
π

d
p

4
 is the probability that 

a photon travelling in the direction )','( ϕµ  would be scattered into an elemental solid 
angle dω in the direction ),( ϕµ . 
 
Radiation traversing a normal optical thickness δτ  in the direction  ),( ϕµ will be 
attenuated by the amount µδτδ /LL =   . Of this amount, a fraction can be attributed 
to that caused by scattering alone – this fraction is called the single scattering albedo 

0ϖ  . It then follows that the phase function p must be normalised according to 
 

10
4 04

≤≤=∫ ϖω
ππ

d
p     (5) 

 
and if p is a constant, then  0ϖ=p  and the scattering is isotropic . 
 
 
4. Directions and Notation. 
 
The strength of a plane parallel beam of radiation is specified by the radiant flux 
density F watts per square metre such that F = dP/dA, where A is the area 
perpendicular to the direction of propagation. Thus F is equal to the net flux πF used 
by Chandrasekhar, with the important exception that  F is used only  for a plane 
parallel beam. 
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Since the equation of transfer deals only in radiances, we will now address the rather 
intriguing question, “What is the radiance of a plane parallel beam?” 
 
Figure 2 shows a ray of a plane parallel beam of flux density F incident on the surface 
of a scattering medium. We shall let the resulting incident radiance be iL , which, 
using Chandrasekhar’s notation would be specified in position and direction as 
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|cos|),,,0( 0000 ϑµϕµ =−= LLi     (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. 
 
 
Many authors specify the polar direction of this radiation in terms of an angle of 
incidence, say i  or iθ , as the angle between the surface normal and the incident ray, 
such that 0ϑπ −=i and define 0µ as icos0 =µ . 
 
The angular distribution of F (or, rather, its lack of it) may be specified analytically 
by making use of the Dirac delta function, which has the property that 
 

∫
∞

∞−
=− )()()( afdxaxxf δ  

 
and, perhaps more importantly, for any 0>ε  
 

∫
+

−
=−

ε

ε
δ

a

a
afdxaxxf )()()( . 

 
The incident radiance on the surface in the direction ),( 00 ϕµ−  is then1 
 

)()( 00 ϕϕδµµδ −−= FiL .    (7) 
 
Figure 3 shows a reflected beam of radiance rL  where 
 

ϑµϕµ cos),,,0( =+= LLr     (8) 

                                                 
1 If equation (7) bothers you in that its right hand side does not appear to have units of radiance, then 
do not worry; in chapter 2 we will demonstrate that indeed  it does have such units. 
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Fig. 3. 
 
Again, many authors define the polar direction of reflection in terms of an angle of 
reflection, the angle between the surface normal and the reflected ray, say θr  (which 
is the same as ϑ ), and define µ  as cos θr. 
 
Figure 4 shows a transmitted ray of radiance tL  where 
 
    |cos|),,,( ϑµϕµτ =−= LLt    (9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. 
 
 
The question then arises: are the values of 0µ and µ , introduced by Chandrasekhar 
and taken up by others, albeit with different definitions, always positive? The answer 
to this is, mostly, yes, but care needs to be taken depending on the context in which 
they occur, as, for example, in the following cases. 
 
Consider the problem of determining the phase angle πα ≤≤0  between incident and 
reflected or transmitted directions  0µ  and µ  , where 
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)cos()1)(1(cos 0
22

00 ϕϕµµµµα −−−+= . (10) 
 
For reflection both µ  and 0µ  are positive, but for transmitted rays µ  must be 
negative. The phase function p  is often expressed in terms of α or cos α. 
 
Or, consider, as in figure 5, the optical path lengths of reflected and transmitted 
radiation from a depth within a medium of optical thickness t. The total optical path 
for the reflected ray is  rµτµτ // 0 + and for the transmitted ray tt µτµτ /)(/ 0 −+  in 

which 0µ , rµ  and tµ are all positive. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. 
 
5. Reflectance Functions. 
 
In the most general case of diffuse reflection, the reflectance of a surface will depend 
on both the direction of the incident radiation and that of the reflected radiation. The 
bidirectional reflectance distribution function , rf , links the irradiance E to the 
reflected radiance, such that 
 

).,(),;,( 0000 ϕµϕµϕµ EfL rr =   (11) 
 
For a surface irradiated with flux density F , the irradiance is simply the component of 
the flux density perpendicular to the surface 
 

F0µ=E ,    (12) 
 
so that, abbreviated, we can write 
 

F0µrr fL =     (13) 
 
One of the simplest examples of a reflectance rule is that of a Lambertian reflecting 
surface for which the radiance is isotropic, so that 
 

F0
0 µ

π
λ

=rL ,    (14) 
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τ  
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where 0λ   is sometimes referred to as the Lambertian albedo .  Although it  is not 

strictly physically correct, it is convenient (Chandrasekhar, p147) to identify 0λ   with 
the single scattering albedo 0ϖ , so for Lambert’s law the BRDF is 
 

π
ϖ 0=rf .    (15) 

 
For the most par t, we shall refer all reflectance rules used to a BRDF; alternative 
reflectance functions will be discussed in  §8. 
 
6. Diffuse Reflection – the Lommel-Seeliger Law. 
 
 
The Lommel-Seeliger reflectance rule is a time-honoured law which is still very much 
in use today. It is based on a model which is possibly the simplest from which a 
solution may be readily obtained for the source function and the equation of transfer. 
As such it is a single scattering model in which the scattering is isotropic, i.e. 0ϖ=p .  
 
Consider a surface irradiated by flux density as shown in figure 3, so that the incident 
radiance is given by equation (7). Of this incident radiation, only a fraction will 
penetrate to optical depth τ  without being scattered or absorbed 
 

)()(),,( 00
/ 0 ϕϕδµµδϕµτ µτ −−= −eL F            (16) 

 
and the source function is 
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Thus the contribution to the radiance from isotropic scattering in the direction 

),( ϕµ+  from a layer of thic kness  τd  at a depth τ  is 
 

τ
πµ

ϖ µτ

d
e

dL
4

0/
0

−

=
F

             (18) 

 
so that the radiance emerging from the surface, without incurring any further 
absorption or scattering , is 

τ
πµ

ϖ
ϕµ µτ

µτ

de
e

dL /
/

0

4
),,0(

0
−

−

=
F

            (19) 

 
Note that dL  is the contribution to the total radiance from the layer resulting from 
single scattering. The Lommel-Seeliger model considers only the scattering of the 
collimated incident light. It does not take into account scatte ring of diffuse light which 
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has made its way indirectly to the same position by being scattered one or more times, 
i.e. it does not consider multiple scattering. 
 
For a planetary surface, the layer is “semi-infinite” ( ∞=t ) and the total radiance in 
the direction µ  is 
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∞
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resulting in 
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and since the irradiance is 0µF=E  and Ef

r
L r=  it follows that the bidirectional 

reflectance distribution function (BRDF) which defines the Lommel-Seeliger 
reflectance rule is 
 

0

0 1

4 µµπ

ϖ

+
=rf  .   (22) 

 
It is interesting to note that Chandrasekhar never quite derives the Lommel-Seeliger 
law formally and explicitly; indeed the name is not even mentioned. However, he 
does come very close on at least two occasions − see Chandrasekhar  p146 and  p217. 
 
 
7. Other Reflectance Functions. 
 
It is important to distinguish between a reflectance function and the reflectance law it 
represents. So far we have only considered one such function, the BRDF, so that the 
Lommel-Seeliger law expressed in terms of the BRDF is given by equation (23) and 
the specific equation for the radiance is given by 
 

F0
0

0 1
4

µ
µµπ

ϖ
+

=rL     (23) 

 
Chandrasekhar takes a quite different approach, linking the radiance to the incident 
flux density through a factor µ4/1 , providing a consistent set of scattering functions 
S and transmission functions T, so that in the case of reflection from a semi-infinite 
surface we have  
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where Chandrasekhar always uses Fπ   for incident radiant flux density F . Although, 
at least at first sight, this formulation may seem strange, even counterintuitive, there is 
a reason for it; the µ  in the denominator is used to satisfy the Helmholtz principle of 
reciprocity (Chandrasekhar, p171), so that 
 

),;,(),;,( 0000 ϕµϕµϕµϕµ SS = .   (25) 
 
Comparing equations (23) and (24), it follows that for the Lommel-Seeliger law the 
Chandrasekhar scattering function is 
 

µµ
µµϖ

µµ
+

=
0

00
0 ),(S ,    (26) 

 
where it can be seen that the reciprocity principle does indeed hold.  
 
Another function to be found in the literature is the bidirectional reflectance r, which 
links the radiance to the incident flux density, so that the Lommel-Seeliger law is then 
 

FrLr r =
+

= ,
4
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00
0 µµ

µ
π

ϖ
µµ    (27) 

 
So, which, if any, of the above functions is the “best” for planetary applications? 
There does not appear to be any “standard” in use in the literature, indeed the situation 
would seem to be quite the opposite, many authors making up their own ad hoc 
“reflectance” or “scattering” functions to suit the problem at hand. (This can make for 
very frustrating reading, especially when words such as “flux”, ”intensity” and 
“brightness” are used loosely, as, sadly, is often the case). 
 
The author can see no compelling reason to prefer one function over another. What is 
important is for authors to state clearly and without ambiguity the properties of the 
reflectance func tion and rule(s) which they are using. 
 
 
8. Diffuse Reflection and Transmission. 
 
A scattering layer of finite optical thickness t may be used to model e.g. a planetary 
ring. If we use the Lommel-Seeliger model, then the reflected radiance of such a layer 
may be determined by changing the upper limit of the integral in equation (20) so that 
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resulting in 
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For the transmitted radiance, it is readily shown that 
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and in the special case 0µµ = , integration results in 
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and otherwise 
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In all cases the values of µ  and 0µ  are positive; some authors even explicitly put in 
absolute value symbols to emphasise this point! 
 
9. Radiances of Planetary Spheres. 
 
We conclude this chapter by applying some of the work covered so far to a planetary 
situation. We will consider two hypothetical planets idealised as smooth spheres. One 
planet will have a surface reflecting according to Lambert’s law, the other the 
Lommel-Seeliger law. The observer is able to resolve both planets equally well, so 
that we may compare and contrast the distribution of radiance across the projected 
discs at various phase angles. 
 
Consider a unit sphere centred at the origin of an Oxyz coordinate system irradiated 
with flux density F from the x-direction. A distant observer in the xy plane detects the 
radiance at phase angle α  (the angle Sun-planet-Earth). Using the spherical 
coordinates ),,1( ΦΘ  for the surface of the sphere, it can be shown for the angles of 
incidence and reflection  
 

)cos(sin

cossin0

αµ

µ

−ΦΘ=

ΦΘ=
             (33) 

 
The projected sphere, the disc seen by the observer, will have projected coordinates 
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−ΦΘ=
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z
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             (34) 
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such that 1' 22 ≤+ zy . Except at zero phase, not all the illuminated surface will be 
visible, since for each point on the disc both the condition 00 >µ  and 0>µ  must be 
satisfied in order that the point be both irradiated and not obscured from the observer. 
 
Defining a quantity relative radiance, F0/ϖπ L , we can directly compare the 
radiances of the two spheres, as shown in the table. 
 

Relative Radiances of Spheres 
Lambertian 

0µ  

Lommel-Seeliger 

µµ
µ
+0

0

4
1  

 
The resulting images are readily programmed. In those that follow (le ftmost 
Lambertian, middle Lommel-Seeliger), each planet has been adjusted so that the 
maximum relative radiance is white. The rightmost image shows the outline of the 
lune visible to the observer. 
 

   
     α = 0 
 

   
     α = 30o 
 

   
     α = 60o 
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     α = 90o 
 

   
     α = 105o 
 

   
     α = 120o 
 
At opposition the Lambertian sphere is limb-darkened, whereas the Lommel-Seeliger 
sphere is uniformly bright. As the phase angle increases from zero the Lommel-
Seeliger sphere becomes darkened towards the terminator and brightened at the limb. 
For phases greater than ninety degrees, the cusps of the Lommel-Seeliger sphere are 
more persistant than the Lambertian. Without commenting any further, the images do 
make interesting comparisons with the phases of the Moon. 
 
 
Reference Notes. 
 
Sections 2, 4, 5, 7, 8 and 9 are based on the author’s interpretation of Chandrasekhar’s 
book, chapters I, III, VI and IX. 
 

1.  Chandrasekhar, S., 1960, Radiative Transfer, Dover, New York. 
 
The ideas of a quantity F defined only for a plane parallel beam and the use of the 
BRDF (bi-directional reflectance distribution function) for astronomical applications 
are taken from 
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2.  Lester. P. L., McCall, M. L. & Tatum, J. B., 1979, J. Roy. Astron. Soc. Can ., 
73, 233 

 
who use F for flux density, which clashes with the F of the πF used by Chandrasekhar 
– this is the reason for using F.   (See also Nicodemus, F.E., Applied Optics, 4, 767 
(1965) and 9 , 1474 (1970) –  JBT) 
 
Section 10 is a revised and corrected adaptation of an article by the author 
 

3.  Fairbairn, M. B., 2002, J. Roy. Astron. Soc. Can., 96 , 18. 
 
Depending on the hardware used, the images shown may display some spurious 
contouring. 
 
 
 
 
 


