
Chapter 15 

Differentiation of Functions of a Complex Variable 

 

Part I 

 

15.1  Introduction 

 

   If you were given a function f (x) of a real variable and asked to differentiate it, you would 

know what you were being asked to do and would know how to do it.  Likewise, if you were 

asked to integrate it from a to b you would know what you were being asked to do and (except 

perhaps in a few unusually difficult cases) you would know how to do it. 

 

   On the other hand, if you were told that f (z) is a function of a complex variable and you were 

asked to differentiate it, or perhaps to integrate it from a + ib  to  c + id, and if you are new to 

this topic, it is possible that, not only do you not know how to do it, but you are not entirely 

certain exactly what is being asked of you. 

 

 

15.2   Differentiation of  f (z).   Numerical discussion 

 

    Imagine a complex number z = x  +  iy in the z-plane.  Let f (z)  =  w  =  u  +  iv. 

 

    Now suppose that z were to change by z in the z-plane.   There would be a resulting change 

w in the w-plane.  We would like somehow to define the derivative 
  

  
 as the limit of 

  

  
  as 

     . 

 

    The difficulty is that both z = x +  iy  and w = u +  iv are complex numbers with both 

magnitude (modulus) and direction (argument).  Does the resulting w depend on the direction of 

z?  Or do we get the same answer for w regardless of the direction (argument) of z? 

 

    Another question will probably arise in the mind of a newcomer.  If w  =  f (z), do the ordinary 

rules of differentiation, with which we are familiar, apply?   For example, if w = sin z, is the 

derivative, whatever that means, just cos z as usual? 

 

   It will take a little while to answer these questions.  In the meantime let us try an empirical 

example. I’ll write a computer program as I go to do the numerical work. Let us suppose that w = 

sin z, and we’ll start with a complex number  

 

z = 0.6 +  0.9i. 

 

  Then w = u + iv with (see previous chapter) u = sin0.6 cosh0.9  and v = cos0.6 sinh0.9. 

Hence 

 

w = 0.8091814413  +  0.8472208130i 

 



  Now let 

 

z  = 0.0002   0.0003i. 

 

 Then u + u  = sin0.6002 cosh0.8997 and v = cos0.6002 sinh0.8997. 

 

Hence 

w + w  = 8092440816  +  0.8467501266i 

 

 

so that  

w  =  0.0000626404     0.0004706864i 

 

 

From this we find                  
  

  
  =  1.1825692533    0.5795782690i 

 
[For the details of this numerical cakulation, see Appendix at the end of Chapter 15 Part I.] 

 

 

   Now let us try, starting from the original z = 0.6 +  0.9i,  instead,   

 
z  = 0.0003   0.0005i. 

 

 

   After going through the same procedure (i.e.  not doing any more work, but merely substituting 

this new z in the computer program) I obtain 

 
  

  
  =  1.1828676637    0.5799443961i 

 

 

  The two derivatives are nearly equal.  We would not expect them to be exactly equal unless we  

had made infinitesimal changes in z.   As it is, these results suggest that, at least in this example,  

the derivative is independent of the direction (argument) of z.  We cannot, however, assume  

that this will necessarily be the case for functions other than sin z.  

 

   The second question that we asked was:  Can we obtain the derivative from the same rules that  

we are accustomed to when dealing with real variables?  That is, is the derivative of sin z  

equal to cos z?  :Let us see: 

 

From the previous chapter, 

 

                                      
 

I find: 

                                                 cos z  =  1.1827772332      0.5796149430i 



 

   Thus apparently  we can just use the ordinary rules of differentiation that we are used to! 

But read Section 15.3 before coming to any hasty general conclusions. 

 

 

Appendix to Part I 

 

 
  

  
      

          

          
    

 

As always, whenever there is a complex number in the denominator of an expression, 

immediately multiply top and bottom by the complex conjugate: 
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Part II 

 

15.3  Differentiation of  f (z).   Analytical discussion 

 

  In Section 15.2 of Part I we found, by a purely empirical numerical example, that the function   

f (z) seemed to have the property that the derivative dw/dz is independent of the direction 

(argument) of z, and therefore at a given point z in the z-plane, there exists a uniquely defined 

derivative.  We didn’t prove this – it just turned out approximately this way in a random 

numerical example with the particular function sin z.  It also seemed that we could differentiate 

sin z in the usual way that we are familiar with in the calculus of real variables, so that the 

derivative of sin z  is cos z. 

 

  But this isn’t necesarily the case for all functions.  If a function has these properties that sin z 

seems to have, then the function is called, by various authors, an analytic, or a regular or a 

homomorphic function, or, in more common parlance, a “well-behaved” function – well-behaved 

in the sense that it and its derivative are finite, single-valued and continuous. Such functions are 

not rare; with luck most of the functions you are interested in will conveniently turn out to be 

analytic. 

 

  If you followed the numerical calculation in Section 15.2 by computer, it will be very easy for 

you to try the same calculation with other functions, to see if they are analytic or not. You just 

have to change the function at the beginning of the program, and the three solutions for the 

derivative will come out in seconds. For example, try it for the functions 

 

                   ⁄      √                                
 

I haven’t tried it, but I expect they will all turn out to be probably analytic, except that 1/z 

obviously won’t be analytic at the origin, and √  will be potentially analytic only if, by the use 

of the  √         we specifically mean the positive square root of z   –   a convention that is 

used by many, but not all, authors.  If your computer program is working smoothly (I have 

occasionally known this to happen) you should have the answers for all these functions in a few 

minutes. 

 

  I have used the words “probably” and “potentially”, because the numerical calculation does not 

prove the analyticity or otherwise of a function.  There is, however, a test that will prove, without 

numerical calculation, whether or not a function is analytic. We shall derive this test as follows: 

 

   Let        ( )      (    )                  
   If z is wholly real   i.e. z = x, what is w ? 

 

   Answer:   w      
  

  
x   =  ( 

  

  
 + i 

  

  
  )x    

 

 Therefore   
  

  
  =  

  

  
 + i 

  

  
   



 

and therefore 

 
  

  
  =  

  

  
 + i 

  

  
                                  A     

 

 
If z is wholly imaginary   i.e. z = i y and y =  i z      what is w ? 

 

 

   Answer:   w      
  

  
y   =  ( 

  

  
 + i 

  

  
  )y    

 

Therefore   
  

  
  =  

  

  
 + i 

  

  
   

 

and therefore 

 
  

  
  =  

  

  
  i 

  

  
                                                B        

 

If 
  

  
 is to be the same whetherzis real or imaginary (and hence whatever the direction of z) 

 

the expressions A and B for 
  

  
 must be equal in their real and imaginary parts separately.  Thus 

the conditions that the derivative is independent of the direction of z are 

    

  
  

  
     

  

  
 

and 

 
  

  
      

  

  
 

 

These are the Riemann-Cauchy conditions. 

 

In Chapter 14 we listed u and v as fiunctions of x and y for each of the functions 

 

                   ⁄      √                                      
 

You can now use the Riemann-Cauchy conditions to see which of these functions are analytic, 

and you can see if this agrees with what you found by numerical calculation. 


