APPENDIX B
Solutions to Miscellaneous Problems

b=10m

By proportions, h =" and h =™ and therefore h + h =1.
k x X k1

Therefore by Pythagoras:

1 1
h = 1.
[\/az—xz * \/bz—x2 ]

Everything but x is known in this equation, which can therefore be solved for x. There
are several ways of solving it; here’s a suggestion. If we put in the numbers, the equation
becomes

1 1
3 ~1=0.
(\/64—x2 ' \/100—sz

Put X = 100 - xz, and the equation becomes

1 1
3(\/X—36+\/YJ_1:0'



This can be written f(X)=3(A+B) —1 = 0, where A and B are obvious functions of
X. Differentiation with respect to X gives f'(X) = —%(A3 + B?) and Newton-Raphson
iteration (X = X —f/f') soon gives X, from which it is then found that x = 6.326 182 m.

mlysino.Q?

In the corotating frame the bob is in equilibrium under the action of three forces — its
weight, the tension in the string and the centrifugal force. (If you don’t like rotating
reference frames and centrifugal force, it will be easy for you to do it “properly”.)

Resolve the forces perpendicular to the string: ml, sino.Q’.cosa = mgsina,and the
problem is finished.

3. (a) Raising or lowering the board doesn’t apply any torques to the system, so the
angular momentum L is conserved. That is,

L =ml*sin” 0.® is constant. (1)
We also have that g = lcosH.m. 2)

i. Eliminate ® from these equations. This gives:

2

I’sin’ 0tan® = L , 3)
2
gm

which is constant.



ii. Eliminate / from equations (1) and (2). This gives:

2

o cot? 0 = mf : (4)

which is constant.

iii. Eliminate 6 from equations (1) and (2). This gives:

m

m{wzz _ Ej e )

(Check the dimensions of all the equations.) Then we can get L/m from equation (1) and
hence

o' (o’ - Q2sin’ o) = g2,

which is constant.

(b) i. P’sin’@tan® = [ sin’ otanor = 0.023675 m’.

Although we are asked to plot 0 vertically versus / horizontally, it is easier, when
working out numerical values, to calculate / as a function of 6. That is,

0.287142

sin® /tan O .

(The number in the numerator is the cube root of 0.023675.)
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For [ = 40 cm = 0.4 m, the semivertical angle is given by

sin’Otan 6 = 0.369923.

The solution to this is 0 =45° 31'.

(See section 1.4 of Celestial Mechanics if you need to know how to solve the equation

fx)=0.)

(b) ii. o’ cot’0 = Q’cot’ .
With the given data, this is @’ =199.385 tan’ 6.
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(b) iii. @' (o - Q2sin’ a)= Q*(Q12 — Q2 sin’a) = Q1 cos® a.
That is, ® (0)12 —a)z g, where, with the given initial data,

a = 048168 m*s™! and g* = 96.04 m*s™.



Although we are asked to plot ® vertically versus [/ horizontally, it is easier, when
working out numerical values, to calculate / as a function of ®. That is,
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To solve the above equation for ® might be slightly easier with the substitution of u for
1/o:

giut +au—-1>=0.

With [ = 0.6 m, this gives u = 0.226121 rad™' s, and hence @ = 4.422 rad s™'. As in part
(b) 1, it is necessary to know how to solve the equation f(x) = 0. See section 1.4 of
Celestial Mechanics if you need to know how.



4. There are no horizontal forces, because the table is smooth. Therefore the centre of
mass of the rod falls vertically.

From energy considerations

10,2 1(1,,72 )92 —

smy” + 7(3ml )9 + mgy = constant. (D
But y =/lcos® and therefore y = —Isin6.0.

(3sin’ @ + 1)I6* + 6gcosB = C. )
Initially 06 =0 =0, .. C =6g.

o = 6g(l1 —cosB)

B 3
I(3sin” 0 + 1) 3)
Also, since y> = [*sin’06” and x* = [*cos’ 067,
. 2 _
we obtain 3 = 6glsin” 6(1 — cos0) “

3sin’ 0 + 1




2 6glcos” 0(1 — cos0)

5
3sin’ 0 + 1 )

and

Of course O and y increase monotonically with ©; but X starts and finishes at zero, and
must go through a maximum. With ¢ = cos 0, equation (5) can be written

= 6glc(1—-c¢) ’

4 -3¢ ©

and by differentiating x> with respect to ¢, we see that x* is greatest at an angle 0 given
by

3¢ —12¢ + 8 =0, @)
the solution of which is 6 = 37° 50'.

If the length of the rodis I m (/=0.5m)and x =1 m s, equation (6) becomes

26.4¢* —29.4c + 4 = 0, (8)

and the two solutions are 0=17°15 and 80° 52'.

The reader who has done all the problems so far will be aware of the importance of being
able instantly to solve the equation f{x) = 0. If you have not already done so, you should
write a computer or calculator program that enables you to do this instantly and at a
moment’s notice. See section 1.4 of Celestial Mechanics if you need to know how.

If you want to find the normal reaction N of the table on the lower end of the rod, you
could maybe start with the vertical equation of motion my = N — mg. Differentiate

equation (4): 2yy = whatever, and the use equation (4) again for y. This looks like

rather heavy and uninteresting algebra to me, so I shan’t pursue it. There may be a better
way...



5. In the figure below I have marked in red the forces on the rod, namely its weight mg
and the horizontal and vertical components X and Y of the reaction of the hinge on the
rod. I have also marked, in green, the transverse and radial components of the

acceleration of the centre of mass. The transverse component is /0 and the radial
component is the centripetal acceleration /0°.

From consideration of the moment of the force mg about the lower end of the rod, it is
evident that the angular acceleration is

b = 3gsin0 ’
41

ey

and by writing  as 046/d® and integrating (with initial conditions 8 = 8 = 0), or from
energy considerations, we obtain the angular speed:

02 = M . )
21
The horizontal and vertical equations of motion are:
X = ml(Bcos® — 6°sin0) 3)
and mg — Y = ml(0sin® + 67 cos 0). 4)

(As ever, check the dimensions - and count the dots!)



After substitution for 6 and 6> we find
X =2mgsinB(3cosO — 2) 5)
and Y =1mg(1-3cos0)’. (6)

The results follow immediately.

6. Call the length of the rod 2/. Initially the height above the table of its centre of mass
is [ cos 40°, and its gravitational potential energy is mg [ cos 40°. When it hits the table

at angular speed @, its kinetic energy is 4 Io’ = %(% mi* )’ = 2ml’®’. Therefore,

(0]
® = /w = 4.7461ad s = 271.9degs ™.

To find the time taken, you can use equation 9.2.10:

I (0 de
t=,—| —m 7
2.[400 E—V(G) )

Here, I =4ml*, E = mglcos40° , V(0) = mglcos® and therefore

(57 9%
38 4 40 \/cos 40° — cos O

The magnitude of the quantity before the integral sign is 0.184428 s. To find the value of
the integral requires either that you be an expert in elliptic integrals or (more likely and
more useful) that you know how to integrate numerically (see Celestial Mechanics 1.2.)
I make the value of the integral 2.187314, so that the time taken is 0.4034 seconds.
When integrating, note that the value of the integrand is infinite at the lower limit. How
to deal with this difficulty is dealt with in Celestial Mechanics 1.2. It cannot be glossed
over.
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7. Here is the diagram. The forces are the weight mg of the rod, and the force of the
table on the rod. However, I have resolved the latter into two components — the normal
reaction N of the table on the rod, and the frictional force F, which may be either to the
left or the right, depending on whether rod is tending to slip towards the right or the left.
The magnitude of F is less than WV as long as the rod is not jus about the slip. When the
rod is just about to slip, F = UN, W being the coefficient of limiting static friction.

Just as in Problem 5, the equations of motion, as long as the rod does not slip, are
F =3mgsin®(3cosO — 2) (1)
and N =1mg(l-3cos0)’. (2)

F 3sin0((3cos6-2)
= . (3)
N (1-3cos9)

The figure below shows F/N as a function of 8. One sees that, as the rod falls over, F/N
increases, and, as soon as it attains a value of U, the rod will slip. We see, however, that
FIN reaches a maximum value, and by calculus we can determine that it reaches a

maximum value of 15@/128 = 0.3706 when 0 =cos™ () =35°06". If p<
0.3706, the bottom of the rod will slip before 6 = 35° 06'. If, however, i > 0.3706, the
rod will not have slipped by the time 6 = 35° 06, and it is safe for a while as F/N starts
to decrease. When 0 reaches cos_l(%) =48° 11', the frictional force changes sign and
thereafter acts to the left. (The frictional force of the table on the rod acts to the left; the
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frictional force of the rod on the table acts to the right.) We know by now (since the rod
survived slipping before 6 = 35° 06', that the magnitude of F/N can be at least as large

0.2} 4

F/N

-0.4

-0.6 .

_1 1 1 1 1 1 1 1 1 1 1
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0, degrees

as 0.3706, and it doesn’t reach this until 6 = 51° 15'. Therefore, if the rod hasn’t slipped
by 6 = 35° 06', it won’t slip before 6 = 51° 15'. But after that it is in danger again of
slipping. F/N becomes infinite (N = 0) when 0 = COS_I(%) = 70° 32', so it will certainly
slip (to the right) before then.

If u = 0.25, the rod will slip to the left when

3sm9(3c0592—2) _ l’ or 6 =19° 39"
(1—3COSG) 4 E————

If u = 0.75, the rod will slip to the right when

3sm9(3cos92—2) _ _é’ or 6 = 53° 07",
(1-3cos ) 4 e

Again, it is very necessary that you prepare for yourself a program that will instantly
solve the equation f(x) = 0.
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Let the length of the ladder be 2/. By geometry, the distance OC remains equal to [
throughout the motion; therefore C describes a circle of radius /, centre O. 1 have
marked in, in green, the radial and transverse components of the acceleration of C,

namely /6% and /0. The angular speed of the ladder is ® and the linear speed of the

centre of mass C is /0. I have also marked, in red, the three forces acting on the ladder,
namely its weight and the reactions of the floor and the wall on the ladder.

The angular speed 6 can be obtained from energy considerations. That is, the loss of
potential energy in going from angle o to the vertical to angle 0 is equal to the gain in

translational and rotational kinetic energies:

mgl(coso — cos8) = Lm(10)* + L(Lmi*)8’.

9% = 32—§(cosoc — cos0). (1)



13

The angular acceleration 6 can be obtained from the following equation:
mglsin® = £ml’0. )

The derivation of equation (2) raises some points of interest, and I discuss it in an
Appendix at the end of the problem.

The vertical and horizontal equations of motion are:

N, = m(l®cos® — [6”sin 6) (3)
and mg — N, = m(I0sin 0 + 167 cos0), 4)
although we need only the first of these, because we wish to find out when N, = 0.
On substitution for & and 6> we find that

N, = 2mgsinB(3cosO — 2cos ) (5)
and N, = +mg( — 6cos0.cosO + 9cos’ 0). (6)

We need only the first of these to see that N, becomes zero (and hence the upper end
loses contact with the wall) when cos® = Zcosa. .

Appendix: Derivation of equation (2).

In my original posting of this solution I had derived equation (2) by considering that the
total moment of all forces about Q is mgl sin 6 , and the rotational inertia with respect to
Qis 4ml*. 1then equated mgl sin ® to 2ml*®. I am indebted to correspondent Amin
Rezaee Zadeh for pointing out a flaw in this argument, and for supplying a correct
derivation. The flaw is that I am applying the equation T = Lto a moving point Q. In
Section 3.12 of Chapter 3 of these notes it is pointed out that T = L can be applied to a

moving point only if the moving point satisfies one or more of three conditions, and it is
evident in this problem that Q satisfies none of these conditions. I present Mr Rezaee’s
correct derivation of equation (2) below.

I shall be making use of equations 3.12.1 and 3.12.2:

L, =1, + Mr)x¥,. 3.12.1

Ly, = D06 —rx[m (v, — v, )] 3.12.2
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I shall also be making use of the notation used in Section 3.12, and I reproduce here
figure III.7 from that Section, and I also draw the relevant vectors appropriate to this
ladder problem.

FIGURE 1IL.7

hy _ ] ..
LQ =T, + MerrQ
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In the figure below, I have indicated an elemental portion ds of the ladder at a distance s
from the upper end of the ladder. Its mass is evidently dm = mz_clis I have drawn the

position vectors r; and r, of ds and of Q. This notation corresponds to the same notation
used in Section 3.12. From the geometry of the figure, we can determine that

r, = ssin@i + (2/—s)cos0j (A1)
and r, = 2lsin0i + 2lcos0j, (A2)

where i and j are the unit vectors in the x- and y- directions respectively.
y

On differentiation with respect to time, we find the following expressions for the
velocities of the element ds and the point Q, in which I again retain the notation used in
Section 3.12:

v, = s6cos0i — (2/—5)0sin 0 (A3)

and Vo = 200cos@i — 200sin@j. (Ad)
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On making use of equation 3.12.2, we obtain for the angular momentum of the element
ds with respect to Q:

dL, = %(rl - rQ)X[(Vi _VQ)]dS‘ (A5)

The instantaneous angular momentum of the entire ladder about Q is therefore

Ly = 2 [ - r el v 0

On substitution of equations (Al) — (A4) into equation (A6) and a modest amount of
algebra, we obtain

- %k “s(s=2Dyds = —2ml*ék, (A7)

where Kk is the unit vector in the z-direction. (The z-direction is out of the plane of the
“paper”, and therefore L, is into the plane of the “paper”. It is worth spending a moment
or two trying to imagine this. The ladder is rotating counterclockwise about C, while C
and Q are moving in clockwise trajectories. It may not be immediately obvious to decide
whether one would expect Lqg to be directed into or out of the plane of the “paper”.
Equation (A7) answers this question.)

We now make use of equation 3.12.1:
L, =1, + mryxi,. (A8)

Let us find expressions for the four vector quantities in this equation.
By differentiation of equation (A7) with respect to time, we obtain

L, = -Zml’6k. (A9)
The torque about Q is

T, = mglsinOk. (A10)

We can see from the geometry of the figure (see especially the second of our figures, in
which we see that r', and r are the same in magnitude and direction) that

r'y = Isin6i + [cos6j. (A11)
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Finally, by differentiation of equation (A4) (in which v, =1, ), we obtain

t, = 2/[(Bcos® — §”sinB)i — (Bsin @ + 6 cos ) j]. (A12)

Substitution of equations (A9) to (A12) into equation (A8) gives, after some algebra,
mglsin® = £ml’0. (A13)

This is equation (2), quod erat demonstrandum.

It will, I think, be agreed that the point O remains fixed in space as long as the
semicylinder remains in contact with wall and floor. Therefore the centre of mass C
moves in a circle around O. We’ll call the radius of the circle, which is the distance
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between O and C, b, which, for a semicylinder, equals 4a/(37) (see Chapter 1), where a is
the radius of the semicylinder. [ have marked, in red, the three forces on the
semicylinder, and also, in green, the radial and transverse components of the acceleration.

The angular speed 6 can be obtained from energy considerations. The gain in Kkinetic
energy in going from rest to an angular speed 0 is %(mkz)é2 , and the gain in potential
energy when the centre of mass drops through a vertical distance b sin 0 is mgbsin©.

Here k is the radius of gyration about O, which, for a semicylinder, is given by
k*=1a’.

[I have left » and k as they are in the equations, so that the analysis could easily be
adapted, if needed, for a hollow semicylinder, or a solid hemisphere, or a hollow
hemisphere. From Chapters 1 and 2 we recall:

2
Solid semicylinder: b= da k*=1a® b2 = 3_22
3 k on
2
Hollow semicylinder: b= 2a k: = a° b_2 = iz
k o8
2
Solid hemisphere: b= 3a k* = 2a’® b_2 -4
8 k 128
2
Hollow hemisphere: b=1a k*=2a’ % = % ]

On equating the gain in kinetic energy to the loss in potential energy, we obtain

2bg

k2

0 =

sin ©. (D

The angular acceleration 6 can be obtained from applying T = I8 about O:

mgbcosO = mkzé,

from which 6 = 28 ose. )

=
The horizontal and vertical equations of motion are

N, = mb(6*cos© + Bsin 0) (3)
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and N,—mg = mb(6*sin® — Hcos0). (4)
We don’t really need equation (4), because we are trying to determine when N, = 0.

On substitution from equations (1) and (2), equation (3) becomes

2
N, = 6m192 g sin©cos 6. ®))
a

This is zero when © = 0° (which was the initial condition) or when 6 = 90°, at which
point contact with the wall is lost, which it was required to show.

.. . .. |2b .
At this instant, the rotational velocity is kzg counterclockwise.
) ) ) 2bg ) .
and the linear velocity of C is b -~ horizontally to the right.
k

. . ) 2b ) ) . .
The rotational kinetic energy is %Ico2 , where ® = 1/}{—5 , and I is the rotational inertia

about the centre of mass, which is m(k*— b*).

K. - mbg(kzz— bz)_
k

. o . [2b
The translational kinetic energy is %mv2 ,where v = _zg .
k

mb’g
Klr = kz .

The sum of these is mbg , which is just equal to the loss of the original potential energy,
which serves as a check on the correctness of our algebra.

There are now no horizontal forces, so the horizontal component of the velocity of C
remains constant. The semicylinder continues to rotate, however, until the rotational
kinetic energy is converted to potential energy and C rises to its maximum height. If the
base then makes an angle ¢ with the vertical, the gain in potential energy is mbg sin
0, and equating this to the rotational kinetic energy gives

sing = 1-b°/k>.
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This gives the following results:

Solid semicylinder: o = 39° 46'
Hollow semicylinder: o = 36° 30
Solid hemisphere: o = 40° 25
Hollow hemisphere: o = 38° 41

10.

It is well known that if o > tan™' p the particle will slide down the plane unless helped by
an extra force. I have drawn the three forces acting on the particle. Its weight mg. The
reaction R of the plane on the particle; if the particle is in limiting static equilibrium, this
reaction will make an angle A (“the angle of friction”) with the plane such that tan A = L.
It therefore makes an angle o —0 with the vertical. Finally, the additional force P
needed; we do not initially know the direction of this force.

When three (or more) coplanar forces are in equilibrium and are drawn head-to-tail, they
form a closed triangle (polygon). I draw the triangle of forces below.



7\
R
|
>

It will be clear from the triangle that P is least when the angle between P and R is 90°:

The least value of P is therefore mg(sino cosA — cosasinA) . But tanA = p and

o and cosA =

1
V1+p® N
_ mg(sin0l — Lcos o)

min /—1 _ uz ’

and P then makes an angle A with the plane.

therefore sinA =
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You may, if you wish, go further, and show that when P makes an angle 3 with the plane,
it must have magnitude

sint — (Lcosal
usinf + cosf

P =

You can then differentiate this with respect to B (you need only differentiate the
denominator) and show that this is a minimum when = A. That is just a harder way of
finding what we already found by using the triangle of forces.

For a.=70° and p = 0.8, P varies with [ like this:

0.95F i

0.9 .

0.85+ .

0.8

0.75

P/(mg)

0.7

0.65

0.6

0.55

05 | | | | | | | |
0 10 20 30 40 50 60 70 80 90

B degrees

This goes through a minimum of Py, = 0.520mg at B = tan™' 0.8 = 38°.7.
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11.

As the cylinder rolls down the plane, the wedge, because its base is smooth, will slide
towards the left. Since there are no external horizontal forces on the system, the centre of
mass of the system will not move horizontally (or, rather, it won’t accelerate
horizontally.)

As usual, we draw a large diagram, using a ruler , and we mark in the forces in red and
the accelerations in green, after which we’ll apply F = ma to the cylinder, or to the
wedge, or to the system as a whole, in two directions. It should be easy and
straightforward.

I have drawn the linear acceleration 5 of the cylinder down the slope, and its angular

acceleration 0. I have drawn the linear acceleration i of the wedge, which is also
shared with the cylinder. I have drawn the gravitational force mg on the cylinder. There
is one more force on the cylinder, namely the reaction of the wedge on the cylinder. But
I’'m not sure in which direction to draw it. Is it normal to the plane? That would mean
there is no frictional force between the cylinder and the plane. Is that correct
(remembering that both the cylinder and the wedge are accelerating)? Of course I could
calculate the moment of the force mg about the point of contact of the cylinder with the
plane, and then I wouldn’t need to concern myself with any forces at that point of contact.
But then that point of contact is not fixed. Oh, dear, I'm getting rather muddled and
unsure of myself.
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This problem, in fact, is ideally suited to a lagrangian rather than a newtonian treatment,
and that is what we shall do. Lagrange proudly asserted that it was not necessary to draw
any diagrams in mechanics, because it could all be done analytically. We are not quite
so talented as Lagrange, however, so we still need a large diagram drawn with a ruler.
But, instead of marking in the forces and accelerations in red and green, we mark in the
velocities in blue.

No frictional or other nonconservative forces do any work, so we can use Lagrange’s

. . . . d(dT oT aV
equations of motion for a conservative holonomic system; —| —|—| — | = —| — |.
dt\ dq dq dq

The speed of the wedge is x and the speed of the centre of mass of the cylinder is

\/ §* + x> — 2§k cosa, and the angular speed of the cylinder is §/a.

The kinetic energy of the system is

N2
T =1m(5* + % — 25kcosq) + %(me)(E} LM,
a

2

2
or T = %m[l+—js'2 — msicosa + L(m+ M)i*,
a

and the potential energy is

V = constant — mgssin Q.
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Application of Lagrange’s equation to the coordinate x gives us

mscoso = (m+ M)x

and application of Lagrange’s equation to the coordinate s gives us

3 P :
[1+ — |§ = Xcosa + gsinaL.
a

Elimination of § from these two equations gives us

mg sin 0L cos Ol
2

k
(m+M)(1 + aZ] — mcos” o

X =

You can also easily find an expression for § is you wish.
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mg

There is no acceleration normal to the plane, and therefore N = mgcosa. The frictional

force F acts along the tangent to the path and is equal to WN, or umg cos o, where W is the
coefficient of moving friction. We are told to ignore the difference between the
coefficients of moving and limiting static friction. Since the particle was originally at
rest in limiting static friction, we must have @ = tan o. Therefore F = mgsin o . The
tangential equation of motion is

ms = —F + whatever the component of mg is in the tangential direction in the sloping
plane.

The component of mg down the plane would be (look at the left hand drawing) mg sin
a, and so its tangential component (look at the right hand drawing) is mg sinasiny. So
we have, for the tangential equation of motion,

ms§ = —mgsin 0 + mgsinasin
or § =—gsina(l — siny).

We are seeking a relation between V and W, so, in the now familiar fashion, we write

dv .. . . .
Vd_ for § , so the tangential equation of motion is
s
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Vi—vz—gsinoc(l—sin\p). (1)
s

We also need the equation of motion normal to the trajectory. The component of mg in
that direction is mg sin ®tcos ¥ , and so the normal equation of motion is

mvV?

= mgsinolcos .

Here p is the radius of curvature of the path, which is the reciprocal of the curvature
ds/dy. The normal equation of motion is therefore

Vzd_W

s = gsinocosy. 2)

Divide equation (1) by equation (2) to eliminate s and thus get a desired differential
equation between V and y:

ld_V _ _(l—sin\p) 3)
V dy cosy
This is easily integrated; a convenient (not the only) way is to multiply top and bottom by

1 + sin y. In any case we soon arrive at
InV = —In(l + siny) + constant, 4)

and with the initial condition V = V,; when ¢y = 0, this becomes

V= Vo .
I+siny

&)

In the limit, as y — 90°, V — 1V,. The particle is then moving at constant velocity
and is in equilibrium under the forces acting upon it just when it was initially at rest.

13. M; = mass of complete sphere of radius a.

M, = mass of missing inner sphere of radius xa.
M = mass of given hollow sphere.
We have M=M,—-M, and M,/M, =x’, and therefore
M My’
M, = - and M, = x3_
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Also I=2Mqa’ -iM,x’a® = 2a°(M, — M,x°).
2 2 1_ )CS
Hence I =<Ma”X >
I—x

Ifx=0,1= %Ma2 , as expected. If x — 1, you may have to use de I’Hopital’s rule to

show that I — 2Ma®, as expected.

14. M; = mass of mantle.
M, = mass of core
M = mass of entire planet.
3
Wehave M =M, + M, and M, _ sd 3x ), and therefore
M, X
3 3
1—
M2:Mx% and M, =M><3S(—x)3-
x +sd-x) x +s-x)
2 2.2, 2 2 1-x
Also I =1, + 1,4 =3Mxa +<:Mua ><1 T
—-X

where I have made use of the result from the previous problem. On substitution of the
expressions for M and M,, we quickly obtain

_ 5
IZ%MC;XM. (1)
s+ (1—-9s)x

A hollow planet would correspond to 1/s = 0. Divide top and bottom by s and it is
immediately seen that the expression for a hollow planet would be identical to the

expression obtained for the previous problem.
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Note that both x =0 and x = 1 correspond to a uniform sphere, so that in either case,
I =2Ma’; for all other cases, the moment of inertia is less than 2 Ma’.

The core size for minimum moment of inertia is easily found by differentiation of the
above expression for /, and the required expression follows after some algebra. For s =

0.6, the equation becomes 9 — 15x*>— 4x’ = 0, of which the only positive real root is
x =0.736382, which corresponds to a moment of inertia of 0.90376 x %Maz. Note

that. for s = 0.6, the moment of inertia, expressed in units of %Ma2 , varies very little as

the core size goes from O to 1, so that measurement of the moment of inertia places very
little restriction on the possible core size.

The inverse of equation (1) is
1-5)x-IA=-5)x+(1-Ds = 0, ()

where / is expressed in units of %Ma2 . ForI = 0.911, there are two positive real roots

(look at the graph); they are x = 0.64753 and 0.81523. For I = 0.929, the roots are
0.55589 and 0.87863. Thus the core size could be anything between 0.55589 and
0.64753 or between 0.81523 and 0.87863 a rather large range of uncertainty. Even if /
were known exactly (which does not happen in science), there would be two solutions for
X.
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15. This is just a matter of geometry. If, when you make a small angular displacement,
you raise the centre of mass of the brick the equilibrium is stable. For, while the brick is
in its vertical position, it is evidently at a potential minimum, and you have to do work to
raise the centre of mass. If, on the other hand, your action in making a small angular
displacement results in a lowering of the centre of mass, the equilibrium is unstable.

When the brick is in its vertical position, the height A, of its centre of mass above the
base of the semicylinder is just

hy =R+ 1.
When it is displaced from the vertical by an angle 0, the point of contact between brick

and semicylinder is displaced by a distance RO, and, by inspection of the drawing, the
new height 4 is

h = Rcos® + ROsin® + [cosH.

h—h, = RBsin® — (R +1)(1 — cos9).
If you Maclaurin expand this as far as 67, you arrive at

h—h, = +(R-186".

This is positive, and therefore the equilibrium is stable, if [ < R, or 2/ < 2R, i.e. if the
length of the brick is less than the diameter of the semicylinder.
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16. As in the previous question, it is just a matter of geometry. If rolling the Thing
results in raising its centre of mass, the equilibrium is stable. Initially, the height of the
centre of massis hyp = b + [.

After rolling, the dashed line, which joins the centres and is of length a + b, makes an
angle 6 with the vertical. The short line joining the centre of mass of the Thing to the
centre of curvature of its bottom is of length / — a and it makes an angle 0 + ¢ with the
vertical. The height of the centre of mass is therefore now

h=(a+b)cosO + (I—a)cos(6+0).
The centre of mass has therefore rise through a height
h—h, = (a+b)cos® + (I—-a)cos(06+0) —b —1.

Also, the two angles are related by ap = b0, so that

h—h, = (a+b)cos® + (I—a)cos[{l+ (b/a)}®] —b 1.
Maclaurin expand the cosines to 6 and you should get

h—hy=-10la+b + (I—a)1+Dbla)’].
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For stability this must be positive, and hence % > é + % .

If a = b, this becomes [ < Ja.

For a hollow semicylinder, [ = (1 — 2/w)a= 0.363a. .. Stable

For a hollow hemisphere, [ = 0.5a. .. Borderline stable
For a solid semicylinder, [ =[1—4/(3m)]a=0.576a. .. Unstable

For a solid hemisphere, [ = 2a =0.625a. . Unstable

17. We need to find the height % of the centre of mass above the level of the pegs as a
function of 6 . See drawing on next page.

Angles: BAC = 45°- 0
ABX = 45°+ 0

Distances: AB = 2ka

AC = 2ka cos (45°— 0)

EF = 2ka cos (45° — 0) cos (45°+ 0) = ak cos 20
DC = a2

DF = av/2cos®

h = DF — EF = a(~2cos® — kcos20)
ho = height of centre of mass above pegs when & = 0° = a(x/i k)
h V2 cos® — kcos20

YT V2 —k

dy/d® will show that maxima and minima of y ( and of the potential energy), and hence
equilibria, occur for 6 = 0° and for cos6 = 1/(k\/§ ), which is possible only if k > 148

A second differentiation, or a graph of /& versus 0, will show which extrema are maxima
and which are minima. In particular the second derivative at ® = 0° is zero for

k =148 =0.354. I draw below graphs of y : O or of h/a : O for several k, and also a
graph of the unstable equilibrium 0 versus k for the range 0.354 < k <0.500. If k =
0.45,0 =+ 38°2.
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k =0.45

The right-hand drawing is a position of equilibrium, but it is unstable. What happens if it
tips counterclockwise? What happens if it tips clockwise?

k=0
stable
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18.

oQ

N
Y
N
N
N
N
N
N
N
N
N
Y
N
N
¢ Y

There are three forces acting on the hemisphere: Its weight mg. The reaction N of the
wall, which is perpendicular to the wall since the wall is smooth. The reaction R of the
floor, which acts at an angle A to the floor, where @ = tan A. Three forces in equilibrium
must act through a point; therefore all three forces act through the point P. It is thus clear
that
sin@ = op = S .
oC ja 3

If p=4, 6=41°48. If u=2> 6=90°. If u >3, the hemisphere can rest in any
position, the equilibrium not being limiting static equilibrium.
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19.

This solution uses the same method that Professor Marsh (Warwick University)
showed me for Problem 20. I believe it to be clearer than an earlier solution that I had
posted.

At an instant when the rod is tilted at angle 0, the coordinates of C with respect to the
fixed point O are:

X = a(sin® — BcosH), (D

y = a(cosO + 0sin0), 2)
and so its velocity components are

X = aBsin0 3)
and y = abcos 0. )

The moment of inertia of the rod about the centre of mass is %ml 2,
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The kinetic energy 7T is the sum of the translational kinetic energy and the rotational
kinetic energy about the centre of mass:

T = (1a’0® + 11*)mb’, (5)
and the potential energy V is

Vv

mga(cosO + Osin ). (6)

One can now get the equation of motion either by Lagrangian means or by equating the
derivative with respect to 6 of the total energy to zero, since there are no nonconservative
forces and hence the total energy is independent of 6. In carrying out the differentiation,

note that iéz = 29% =20. We obtain, for the equation of motion:
a’00’ + (4’0’ + %lz)é + gaBcosB = 0. @)

For small 0 (neglecting second and higher powers of 8), cos® — 1 and a6 is
negligible compared with I, so the equation of motion becomes, approximately,

0= _3ga and so the period is P = 2l

12 1/3ga.
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20.

I am much indebted to Professor T. R. Marsh of Warwick University not only for
finding a mistake in an earlier posted solution to this problem, but for providing the

following solution.

A

y
P,
Q a0

<)

We are going to refer the motion to a fixed point Q, which is the point of contact
between hemisphere and table when the hemisphere is in its equilibrium position.

At an instant when the hemisphere is tilted at an angle 0, the distance between A and Q
is aB, and the coordinates of C relative to Q are

asin0, (D

[ ][o%)

X = a0 —

=a—2acosH. 2)

~<|
oo

Therefore the velocity components of C are
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=
Il

a(l — 2cos0)h 3)
y = 2asin66. 4)
By the parallel axes theorem, the moment of inertia around the centre of mass is

2 2 2
I =2ma” — mGa) = E-ma’. (%)

The kinetic energy T is the sum of the translational kinetic energy and the rotational
kinetic energy about the centre of mass:

T = %maz{(l—%cose)z + (%sine)2 + %}92 = maz(%—%cose)é2. (6)

The potential energy V is
V = mga(l — 3cos®). 7)

We can the get the equation of motion either by using the Lagrangian equations, or by
calculating the derivative with respect to 0 of the total energy 7 + V. The derivative is
zero, because there are no nonconservative forces and total energy is constant. Note that

(as in Problem 19) the derivative of 62 with respect to 0 is ZGZ—E , which is 20. Either

method results in the equation of motion:

(Z - 3cos0)d + 2s5in06> + 3gsind = 0. (8)

In the small angle limit,cos®—1 and sin® — 0, and 67 is negligible compared with
g, so the equation of motion becomes

_15¢
26a

P =2m @. (10)
15¢

0 = 0, 9)
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21. The (second) moment of inertia with respect to the centre (see Section 2.19 of
Chapter 2) is

I.. = 47tp0J.0 (r* = rlaydr = trpya’.
The moment of inertia with respect to an axis through the centre is 2/3 of this:

—_ 4 5
1 = Eﬂtpoa .

axis

axis 15

22.
N, = mgcos(0.—0) N, = mgcos(a+0)
F, = uN, F, = N,

Left-hand particle: T = mg[ucos(aa—0) + sin(a—0)].

Right-hand particle: T = mg[sin(a+0) — pcos(a+0)].

pcos(a—0) + cos(a+0)] = sin(a+0) — sin(o—0),
and, by the “sum and difference” trigonometrical formulae, we obtain

2lLcosaucos O = 2cosasin 6,

from which tan® = L.
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N
UON

Consider a portion of the rope between 0 and 80. There are four forces on this portion.
The tension 7 at ©. The tension 7 + 8T at © + 00 (87T is negative). The normal
reaction ON of the cylinder on the rope. The frictional force UWON of the cylinder on the
rope. Note that the rope is about to slip downwards, so the friction force is upwards as

shown.
We have ON = (2T + 0T )sin(30)
and (T + 0T)cos(306) + WON = T cos(400).

To first order, these become

and oT =

oT =

and hence by integration F =

T 36
—WLON.

—uT 56

Mge™.
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X'-axis

2a(x +y—1)

Y -axis
Area of square = 4a’
Area of rectangle = 4a*(1-x)
Area of triangle = 2a°(x+y-1)
Area of trapezoid = 2a°(I-x+y)

The weight of the cube is 8a3psg, and it acts downward through C, the centre of
mass. The hydrostatic upthrust is 4a’(1 — x + y)pg and it acts upward through the
centre of buoyancy H. Here p is the density of the fluid, and ps is the density of
the wood. We evidently must find the X'- coordinate of C and of H. Let’s first of
all find the X- and Y- coordinates (see the next figure).

The X- and Y- coordinates of C are trivial and quite easy respectively:
X.=a Yo = a(l - 2x)
You are going to have to work quite hard at it to find the X- and Y- coordinates of

H, the centre of buoyancy, which is the centroid of the trapezoid. “After some
algebra” you should find
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_ 2(1-x+2y)a v - 22—4x+2y+2x" —2xy—y*)a

H H

31-x+y)

Y-axis

31-x+y)

To find the X '- coordinates of C and of H, we use the usual formulas for rotation

of axes, being sure to get it the right way round:
X"\ (cos® —sin®\( X
Y') \|sin® cosO)\Y )
together with tan® = x+ y — 1.

Take moments about the axle (origin):

8a’psgX'. = 4a’pg(1—x+y).

After a little more algebra, you should eventually arrive at

_ 3—7x+2y+6x2—3y2—2x3+y3+3xy2_

’ 3(2 =3x—y+2x> +2xy)
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25.

Let the radii of the cylinder and sphere be a and b respectively, and the mass of the
sphere be M. The angles 0 and ¢ are related by a® = b¢. I have drawn the three forces
on the sphere, namely its weight, the normal reaction of the cylinder on the sphere, and
the frictional force on the sphere. The transverse acceleration of the centre of the sphere

is (a + b)é and the centripetal acceleration is (a + b)éz. The equations of motion are:
Mgsin® — F = M(a + b) (1)

and Mgcos® — N = M(a + b)o°. )

The angular acceleration of the sphere about its centre is 0 + ¢ = (1 + a/b)0, and its

rotational inertia is 2Mb*/5. The torque that is causing this angular acceleration is Fb,
and therefore the rotational equation of motion is

Fb = 2Mb*(1 + a/b)8. 3)

Elimination of F between equations (1) and (3) yields

6= _28 e (4)
7(a + b)
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Write 6 as 6d6/d0 in the usual way and integrate with initial conditions 6 =8 =0, or
from energy considerations:

02 — 10g

= —7(a D) (1= cos0). )

Substitute for  and 6 into equation (2) to obtain
N = Mg(17cos0 —10). (6)

This is zero, and the sphere leaves the cylinder, when cos 6 = 10/17, 6 = 53°58'".

26.

12 cm

9 cm
Surface density = 6 gcm ™2

Original sandwich:
Mass =540 g

x-coordinate of centre of mass =3 cm
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y-coordinate of centre of mass =4 cm
Bite:

Mass = 113’6 =14.137 166 946 ¢

Distance of centre of mass from hypotenuse = Si X3 = 4 = 1.273 239 545 cm
T

o
) 4 16
x-coordinate of centre of mass = 4.5 — —sin0® = 4.5 — 5— = 3.481 408 364 cm
T T
) 4 12
y-coordinate of centre of mass= 6 — —cos0 = 6 — % = 5.236 056 273 cm
T o

Remainder:
Mass = (54 — 14.137 166 94)c = 39.862 833 066 ¢
x-coordinate of centre of mass = x

y-coordinate of centre of mass = y

Moments:

39.862 833 06x + 14.137 166 94 x 3.481 408 364 = 54 x3. x =2.829 270780 cm

39.862 83306y + 14.137 166 94 x 5.236 056 273

53x4. y =3.561638436 cm

This point is very close to the edge of the bite. The centre of the bite is at (4.5, 6), and its
radius is 3. Its equation is therefore

(x =45 + (y=6)*> =9, or x> +y> —9x—12y + 47.25=0.
The line x = 2.829 270 780 cuts the circle where y*> —12y +29.791336 13 =0. The

lower of the two points of intersection is at y = 3.508 280 941 cm. The centre of mass is
slightly higher than this and is therefore just inside the bite.
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27.

m 60

- When the band is

Consider a portion of the band within the angle 36. Its mass is 5
T

spinning at angular speed ® and its radius is r, the centrifugal force on that portion is

2
OF = %ﬁe - (I leave it to the philosophers and the schoolteachers to debate as to
T

whether there “really” is “such thing” as centrifugal force — I want to get this problem
done, and I'm referring to a co-rotating frame.) The y-component of this force is
mroy’ cos 080

5 . Also, the tension in the band when its radius is ris T = 27k(r — a).
o

Consider the equilibrium of half of the band. The y-component of the centrifugal force

2 M 2
on it is m;(o .[ :cosede - o The opposing force is 2T = 4nk(r —a). Equating
T oYl T
)y An’k(r—a) '

these gives @™ =
mr




51
28. Let the distance AB be [ and the distance AC be ¢. Let the mass of the rod be m.

A P C B

ox

Consider an elemental portion ox of the rod at P at a distance x from A. Its weight is

m dx . . . .
- When the rod is about to move, it will experience a frictional force

Hmg ox Sx’ which will be in the direction shown if P is to the left of C, and in the

o =

opposite direction if P is to the right of C. When the rod is just about to move (but has not
yet done so) it is still in equilibrium. Consider the moment about A of the frictional
forces on the rod. The clockwise moment of the frictional forces on AC must equal the
counterclockwise moment of the frictional forces on CB. Thus

Ll%Jnocxalx = M%jixdx.

c=1h2.
The net force on the rod is

F - M%Jlocalx + u%Jjalx,

and this is zero, and therefore

F = w = (\/E—l)umg.

29. The cone slips when tan 6 > L.
It tips when C (the centre of mass) is to the left of M.

The distance OC is h/4. (See Chapter 1, section 1.7). Therefore it tips whentan® > 4a/ h.
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Thus it slips if W < 4a/h and it tips if @ >4a/h.

O
0
30. 2a
Keommmom] —
l \\\ x
LYY
A

When the block is just about to tip, the reaction of the table on the block acts at A and it
is directed towards the point K, because, when three coplanar forces are in equilibrium
they must act through a single point. The angle A is given by tan A = a/x. However, by
the usual laws of friction, the block will slip as soon as tan A = . Thus the block will
slipif @ < a/x, and it will tip if © > a/x. Expressed otherwise, it will slip if x < a/p and
it will tip if x > a/u. The greatest possible value of x is 2a; therefore the block will
inevitably slipif @ < Ya.
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31.

When or if the cylinder is just about to tip, it is about to lose contact with the left hand
peg. The only forces on the cylinder are the torque, the weight, and the reaction R of the
right hand peg on the cylinder, which must be vertical and equal to mg. But the greatest
possible angle that the reaction R can make with the surface of the cylinder is the angle of
friction A given by tan A = W. From geometry, we see that sin 6 = k, or

tan® = k/y/1 — k> . Thus the cylinder will slip before it tips if u < k/y/1 — k> and it
will tip before it slips if w > k/yf1 —k* .

If the cylinder tips (which it will do if w > k/\/1 — k> ), the clockwise torque T at that

moment will equal the counterclockwise torque of the couple (R and mg), which is mgka.
Thus the torque when the cylinder tips is

TIP: T = mgak. ()
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When or if the cylinder is just about to slip, the forces are as shown above, in which I
have resolved the reactions of the pegs on the cylinder into a normal reaction (towards
the axis of the cylinder) and a frictional force, which, when slipping is about to occur, is
equal to U times the normal reaction. The equilibrium conditions are

W(N, + N,)cos® + (N, — N,)sin6 = 0,
WN, — N,)sin® — (N, +N,)cos0+mg = 0
and WN, + Nya = 7.

We can find N; + N, by eliminating N; — N, from the first two equations, and then,
writing 4/1 — k> for cos 0, we find that, when slipping is about to occur,

SLIP t= mgax —M x—1

. 2
1+u®  f1-k2 @

I have drawn below the functions

= k (tip) and L = — X ! (slip)
mga mga I+ \/1 —k?

for k = 0.1, 0.3, 0.5, 1/;/2 and 0.9. The horizontal lines are the tip functions, and the
curves are the slip functions. As long as W < k/y/1 — k> the cylinder will slip. As soon

as W > k/yJ1— k> the cylinder will tip.
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We’ll leave to the philosophers the question as to whether centrifugal force “really
exists”, and we’ll work in a co-rotating reference frame, so that the car, when referred to
that frame, is in static equilibrium under the six forces shown. Clearly, Ny and N, = mg
and Fi+F,= mUz/R

The car slips when F; + F, = W(N; + N,); thatis, when v = \/ugR.

The car tips when mv°h/R = mgd ;that is, when v = /dgR/h.

That is, it will slip or tip according as to whether @ < d/h or > d/h.
For example suppose d =60 cm, h=80cm, g= 9.8ms >, R=30m, u=0.8.
In that case, d/h = 0.75, so it will tipat v = 14.8 m s’ = 535kmhr.

But if it rains, reducing W to 0.7, it will slipat v = 14.3ms' = 51.6kmhr".

33.
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I have drawn in green the radial and transverse components of the acceleration of the

centre of mass a6’ and a6 respectively. I have drawn in red the weight of the rod and
the normal and frictional components of the force of the table on the rod at A, N and F
respectively.

The following are the equations of motion:

Normal: mab = mgcos® — N. (D
Lengthwise: ma®® = —mgsin® + F. ()
Rotation: k*0 = gacos. 3)

Here k is the radius of gyration about A, given by

k* =41 +a’. (4)

w

From equations (1), (3) and (4), we obtain
12
N = mgcosb| —— |. 5
& (12 + 3a2j )

The space integral (see Chapter 6, section 6.2) of equation (3), with initial condition
0 =0when 6 = 0, results in

0 = %sin 0. ©6)

This can also be obtained by equation the loss of potential energy, mgasin0, to the gain

in kinetic energy, 1mk’6°.

Combining this with equations (2) and (4) leads to

(7

I* +94*
F = mgsin®] ———— |.
¢ (12+3a2j

At the instant of slipping, F' = WV, and hence, from equations (5) and (7) we find

u

tan 6 =
1+9(all)
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34. 1 derive v° = gx + %xz by two different methods — one from energy

considerations, the other from angular momentum considerations. First, energy.

If the table top is taken to be the zero level for potential energy, the initial potential
energy was —4m.g.41 = —4mgl.

When the length of the dangling portion is 3/ + x, the potential energy is
mgx’
21

2

1
(A st = G0 = gt~ -

2

mgx
21
This is equal to the gain in kinetic energy %mvz, and therefore

The loss of potential energy is therefore 1mgx +
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Another method:

1
El +Xx

° A

Consider a point A. Anywhere will do, but I have chosen it to be a distance / below the
level of the table and / to the left of the table edge. The moment of momentum (= angular
momentum) of the chain about this point is mlv = milx, and its rate of change is

1
EZ+X

therefore mlx. The torque about A is ( jmgl = (31 + x)mg. These are equal, and

so IX = g(31 + x). Write X = v% in the usual way, and integrate (with v =0 when x
X

=0) and the result v° = gx + %xz follows.

To find the relation between x and ¢t we can use the energy equation 9.2.9 for conservative
systems

_|m IXL,
2% JE-V(x)
Here xo = 0 and we have already seen that £ — V(x) = mz—‘lgx2 + % Upon integrating

this expression, we obtain, after a little algebra and calculus,
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r =

g 31

1 ln(x+§l+w/x2 +lx]‘ )

The converse of this is the required expression

G

X de gllt )
Differentiation of this with respect to time produces the third required expression:
i Jagiit 1
L _ sl )| 3

You may verify from these last two equations, if you wish, that v*> = gx + %xz .

The chain falls completely off the table when x = %l . That is (by using equation (1)), at
time \/zln(Z +4/3) = 1.317\P
8 8

If we express distances in units of /, time in units of _|—, and therefore necessarily
8

speeds in units of @ , equations (2) and (3) become

(e' = 1)? _
x=7=i(ef+ef—2)=§(cosht—1) “4)
2t
~1
v = e4et = Lsinht )

and we can get the acceleration by a further differentiation:

a =%( +e') = Lcoshr. (6)
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We are pleased to note that, by the time that x ==/ [i.e. when the chain completely

1
2
leaves the table at time ¢ = In(2 + \/5)1/1 /g) 1, the acceleration is g. The speed is then

J2lg = 0.866,lg.

35. (a)
1
2 d
3 d
4 d3 i
D

The maximum overhang of book 1 is d; = w.
The centre mass of 1+ 2 is at 3w/2 from the left hand side (LHS) of 2, so d» = w/2.

The distance of the centre of mass of 1+2+3 is at Sw/2 from the LHS of 3, so d3 = w/3.

Thus D = d, +d, +d, = (1+ 1+ Hw=1.83w.

(b) In asimilar manner we find that, given n + 1 books, the maximum overhang is
D=(1+3+1+... . +DHw.
I don’t know if there is a simple expression for the sum to n terms of this harmonic series.
Please let me know if you know of one or can find one. Therefore I used a computer to
solve
I+3+3+... ... +1 =10
by brute force. I got n = 12367, so you would need 12368 books.

(c) The harmonic series is divergent and has no finite limit, so there is no finite
limit to the possible overhang.

You might wish to speculate on any practical limitations on constructing such a pile
of books. For example, we have been assuming a uniform gravitational field — but this
will no longer be valid once the overhang becomes comparable to the radius of Earth.
This will, however, need quite a large number of books.
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36. In the solution that follows, a prime (') will be used to denote differentiation with

, _dy

respect to x, and p = y' = e I shall also make use of an auxiliary variable

X

0 = sinh™ p. The initial conditions are y=0, x =a, p=0, ¢ = 0. The final conditions

are x =0, p =—oo, ¢ =—o0, y to be determined.

0-7 T T T T T T

At time ¢, the y-coordinate of the Manis v ¢. If (x, y) are the coordinates of the Dog at

that time, the slope of the path taken by the Dog is

vt—y

so that vt = y— px.

The speed of the Dog is

ey

2)

3)
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[This comes from ds = /1 + (dy/dx)* dx. The minus sign is necessary because
(dx/dt)is negative, and Av, the speed (not velocity!) of the Dog is necessarily positive.]

Now (dx/dt) = —1/t',so equation (3) can be written

Avt' = =1+ p*. “)

If we can eliminate ¢ between equations (2) and (4), we will obtain a relation between the
slope p and x, and hence potentially a relation between y and x.

Differentiate equation (2) with respect to x (recalling that y'= p):
vt' = —p'x. %)
It is now simple to eliminate ' from equations (4) and (5):

Ap'x = 1+ p*. (6)

On separating the variables and integrating, we obtain

A I dp__ _ I @ 7
With initial conditions p = 0 when x = a, this gives us

Asinh™ p = In(x/a), (8)
or x = ae™, )
where ¢ =sinh™ p. (10)

Equation (9), with (10), gives us the relation between x and the slope, p. Note that p and
hence ¢ are negative, so that equation says that x < a.

Our next task will be to find a relation between y and p (or between y and ¢).
From equation (10) we have
dy = sinh¢dx, (11)

and from equation (9) we have
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dx = aAe™dd. (12)
From these we obtain the differential relation between y and ¢:

dy = aAe™ sinh¢pdo, (13)
or dy = LaA(e" ™ — &4 )do. (14)

Integrate this, with initial condition ¢ = 0 when y = 0, to obtain

(A+Do (A-1)o 2
y:%MV _e } (1s)

A+1 A-1 A* -1

Equation (9) and (15) are parametric equations to the path of the Dog, though it is easy to
eliminate ¢ and write y explicitly as a function of x:

y:w{m e 2} 16)

A+1 A-1 A* =1

The figure was drawn for a = 1, A = 2, for which equation (16) reduces to
y =[x (x - 3) +2]. (17)

The distance walked by the Man is found by putting ¢ = —eo in equation 15. Thus

aA
= , 18
Y= (13)
and the time taken is
f= A (19)
V(AT —-1)

37. Let[be the length of the string.

a.
Kinetic energy of the upper mass = L (mr?)®’ + Lmi’.
1002

Kinetic energy of the lower mass = S mi".

Potential energy of the lower mass = =mg(l—r).
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Total energy of the system = L (mr*)®® + mi* — mg(l-r). (1)
Initial total energy of the system = 1 (ma’)ow; — mg(l—a). ()
Energy is conserved and therefore, by equating (1) and (2), we obtain
it = gla-r) + td’e] - 1rie’. 3)
Angular momentum is also conserved, and therefore
r’o = ad’w,. 4)

On elimination of r between equations (3) and (4) we obtain, after some algebra,
) 2
r_:1+%1_2_,&' (3)
ga 2g W, ()

b. If aw, = g and Q = w/®,, it is trivial to show that

<2
2

ga

=3 - 10 -1//Q. (6)

c. Algebra and calculus show that 5 — 1Q —1/ JQ is negative for all positive

Q except for Q =1, when it reaches a maximum value of zero.

d. If ao; =2g and Q = ®/®,, it is trivial to show that

.2
I — 2 -0 -1/d9. (7)
ga

Algebra and calculus show that 2 — Q —1/ JQ reaches a maximum value for
Q = w/w,= 1/2*" = 0.629 961, at which time 7*/(ga) =0.110118. That is, when

’Z.

r

0.331841,/ga. Equation (4) (conservation of angular momentum) shows that
alQ =32a = 1.259 921a.
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Solution of 2 — Q —1/4/Q = 0shows that the speed is zero when Q = 1 (the initial
condition) and when Q = ®/®,= 0.381966 (the equilibrium value). Equation (4)

(conservation of angular momentum) shows that r = a/ JQ = 1.618 034a.

e. If aw; =1g and Q = ®/w,, itis trivial to show that

<2
2

ga

=3 10 —1//Q. (8)

Algebra and calculus show that 3 — £Q —1/4/Q reaches a maximum value for
Q = o/o,=2"" = 1.587 401, at which time 7*/(ga) = 0.059449. That is, when
r = —0.243 822,/ga. Equation (4) (conservation of angular momentum) shows that

r=aldQ = a/¥2 = 0.793 701a.

Solution of 3 — +Q —1/ JQ = 0 shows that the speed is zero when Q = 1 (the initial
condition) and when Q = ®/®, = 2.438 447 (the equilibrium value). Equation (4)

(conservation of angular momentum) shows that r = a/ JQ = 0.640 388a.

How much further can we go with this question? By elimination of r between equations
(3) and (4) we obtained a relation between rand ®. By elimination of ® between
equations (3) and (4) we can get a relation between 7 and r. It will be of the form

P = A - gr— BIr’, )

where A = ga +1a’®w, and B = a'e,. If you can integrate this, you then get a

relation between r and #. 1 haven’t given much though as to whether you can get integrate
equation (9) analytically (if anyone manages it, please let me know), but at least a
numerical integration will certainly be possible.

In another variation of the question, you can start with an equilibrium situation in which
aw; = g, and then add an extra mass m (or M, if you want to make it more general) and
then follow the motion from there. Ileave that to you.

38. Let’s look at the rod from above when it is twisted in the horizontal plane through a
small angle 0.



Each of the points where the threads are attached to the rod is displaced horizontally
through a distance 1 DO. (Since 0 is small and D << L, we can neglect the slight
vertical rise in the position of the rod.) Each thread is now displaced from the vertical by
an angle ¢ given by

=
Il
N =
=

O mmmmmmmm e ————

S
<

The tension T in each thread is 4 mg cos ¢, which, to first order in ¢, is just 3 mg.

The horizontal component of each of these forces is 1 mg sin¢, which, to first order in ¢,
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1
2

Therefore the rod experiences a restoring torque equal to +mgD¢. But ¢ = and

. . mgD’0
therefore the restoring torque is & .

The equation of motion is therefore

2
_mgD 0
4L

10 =

and consequently the period P of small oscillations is

p oo [ALL 4 [LT,
mgD D \ mg

If the rod is uniform and of length 2/, its moment of inertia is %mlz, and in that case the

period of small oscillations is

anl [L
D \3g

There is no need to remind the reader to check the dimensions of these equations.

39. When the yo-yo has fallen through a distance x, it has lost potential energy Mgh, and
it has gained translational kinetic energy imv® and gained rotational kinetic energy

1]@’, where @ = v/a. Therefore Mgx = LMv* + L1(v/a)?, from which

Ma>
2 _ 9. ?g,x
Ma™ +1

Thus, from the usual equations for constant linear acceleration, the acceleration is

Ma*

—F X .
Ma* + 1 &
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The net downward force is Mg — P, where P is the tension in the string. This is equal to
M times the acceleration, from which we obtain

I
P = — X Msg.
Ma* + 1 8
40 (a)
AkP
Inner radius a
Outer radius b C Q
Mg
TN
A

I have drawn four forces on the yo-yo. Its weight Mg. The tension P in the string. The
normal reaction N of the table on the yo-yo. And the frictional force F of the table on the
yo-yo. As long as the yo-yo is in contact with the table and there is no vertical
acceleration, we must have P + N = Mg.

Let us suppose that there is no slipping between the yo-yo and the table, so that the yo-yo
rolls to the left. We note that there is a net force F to the left, and a net counterclockwise
torque about C equal to Pa — Fb. Thus the yo-yo accelerates to the left at a rate F/M it

and experiences a counterclockwise angular acceleration (Pa — Fb)a/l. If there is no

slipping, these must be related by F/M =b X Pa+Fb. Thus, if there is no slipping,

Mab
- (W]P )

The linear acceleration to the left must be F/M, or
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abP

I + Mb* @

Alternative derivation:

There is a net counterclockwise torque about A equal to Pa. The moment of inertia with
respect to A is I + Mb>. Therefore there is an angular acceleration about A equal to

Pa Therefore the linear acceleration of C to the left is

—. ——, and the
1+ Mb I+ Mb

frictional force F' is M times this, or F = M—abz P
I + Mb

End of Alternative Derivation.

However, if the yo-yo is just about to slip, F = uN = u(Mg — P). Upon substitution of
this into equation (1), we see that the yo-yo will just slip if

uMg (I + Mb*)

= 5 . 3)
Wl + Mb~) + Mab
That is, the yo-yo will roll to the left without slipping if
MabP
TS —. “)
(Mg — P)(I + Mb")
Its linear acceleration is then given by equation (2), namely
abP
sl 2
1 + Mb* @
On the other hand, the yo-yo will rotate counterclockwise with no rolling if
MabP
H )

<(Mg—mu+MVy
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The sum of the counterclockwise moments of the forces about C is then Pa — Fb, where
F =uN = w(Mg — P). The counterclockwise angular acceleration about C is

Pa—Fb  P(a—ub) — uMg
I 1

(6)

40(b)

Inner radius a
Outer radius b

I have drawn the four forces on the yo-yo. Its weight Mg. The normal reaction of the
table on the yo-yo, which is also of magnitude Mg. The tension P in the string. And the
frictional force F of the table on the yo-yo.

At this point it may not be immediately obvious whether F acts to the left or the right.
For example, let us suppose that the coefficient of friction is zero. The force P will result
in a translation of the yo-yo to the right together with a clockwise rotation of the yo-yo.
So, in which direction does the point A on the circumference of the yo-yo move — to the
left or the right? It is hard to say, but one might suppose, qualitatively, that, if the
moment of inertia is large, the induced rotation will be sluggish, so that A moves to the
right. Whereas if / is small, the induced rotation will be rapid, and A will move to the left
in spite of the translational motion of the centre of mass to the right. From this we might
conclude that, if W # 0, F will act to the right if 7 is small, and F will act to the left if 7 is

large. The following analysis shows that this qualitative expectation is correct.

(The reader might find some of the Problems in Section 8.2 of Chapter 8 to be helpful at
this point, particularly Problem 2.5.)

For the time being, I have drawn F as if acting towards the left.
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Let us suppose there is no slipping and that the yo-yo rolls.

The sum of the clockwise moments of the forces about A is P(a + b), and the moment of
inertia about A is I + Mb*. The yo-yo therefore undergoes an initial clockwise angular
P(a +b)

I+ Mb>
linear acceleration of C to the right equal to

acceleration about A equal to and, therefore (if there is no slipping), an initial

Pb(a + b)
-~ 77, 1
I + Mb’ M
The above linear acceleration must equal (P — F)/ M, from which we obtain
F = I_—A/Iazb P. )
I + Mb

This shows that the frictional force F acts to the left, as shown, if I > Mab;but if
I < Mab, the frictional force F acts to the right. This is in agreement with our qualitative
expectations, namely that F will act to the left if / is large, and to the right if 7 is small.

Let is consider three cases in turn: I > Mab, [ < Mab and I = Mab.
(i) I > Mab. In this case, F acts to the left, as drawn. Provided F < uMg, there will
be no slipping at A, and the yo-yo will roll to the right without slipping. On recalling

equation (2), we see that the yo-yo will roll to the right without slipping, with a linear
acceleration given by equation (1) if

I —Mab\[ P
“>(1+Mb2J(MgJ’ ©)

The linear acceleration to the right is given by equation (1), namely

Pb(a + b)

. 1
I + Mb* )

However, if n < I- Mazb P ) “4)
I + Mb Mg
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slipping occurs at A. The frictional force is the no longer given by equation (2), but is
given by

F =uMg, )
and it acts to the left.

(We are concerned in this problem with the initial motion. Once motion is underway, |
has to be replaced with the smaller coefficient of kinetic friction.)

The net force to the right is then P — uMg, so the linear acceleration of C to the right is

P - uMg
'8 6
M ©)

Because of condition (4), this is necessarily positive.

The net clockwise moment of the forces about the centre of mass C is Pa + uMgb. The
yo-yo therefore undergoes a clockwise angular acceleration about C of

Pa + uMgb

| )

The linear acceleration to the right of the point A on the circumference of the yo-yo is

P - Pa + uM .. .
ﬂ - bx %gb ,»and, because of condition (4), some algebra will show

M
that this is necessarily positive, as expected.

(ii)I < Mab. In this case, F acts to the right, and the linear acceleration is

(P + F)/M. Provided that
S Maf -1\ P ’ )
Mb~ + 1 )\ Mg

the yo-yo will roll to the right with a linear acceleration given by equation (1), namely

Pb(a + b)

. 1
I + Mb? 1
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However, if n < Maﬁ) ! P , )
Mb” +1 )\ Mg

slipping occurs at A. The frictional force is then given by
F =uMg, (10)
and it acts to the right.

The net force to the right is then P + uMg, so the linear acceleration to the right is

P+uMg a1
M

The net clockwise moment of the forces about the centre of mass C is Pa — uMgb. The

yo-yo therefore undergoes a clockwise angular acceleration about C of

Pa — uMgb

/ (12)

The linear acceleration to the left of the point A on the circumference of the yo-yo is

b % Pa-uMgb P +A;LMg ,and, because of condition (8), some algebra will show

that this is necessarily positive, as expected.

I = Mab. In this case, F'is zero. Whatever the coefficient of friction, even zero, the
yo-yo will undergo a linear acceleration P/M to the right (Verify that this is consistent
with equation (1)), and a clockwise angular acceleration about C equal to Pa/l. The
linear acceleration to the right of the point A on the circumference of the yo-yo is

i — bx&,
M 1

which is zero. The initial linear velocity of the point A is therefore zero.
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40 (c)

Inner radius a
Outer radius b

I have drawn the four forces on the yo-yo. Its weight Mg. The normal reaction of the
table on the yo-yo, which is also of magnitude Mg. The tension P in the string. And the
frictional force F of the table on the yo-yo. On this occasion (unlike in Problem 40 (b))
there is no question about the direction of F, which is towards the left.

Let us suppose there is no slipping.

The sum of the clockwise moments of the forces about A is P(b — a), and the moment of

inertia about A is I + Mb’. The yo-yo therefore undergoes an initial clockwise angular

P - a)

acceleration about A equal to R and therefore (if there is no slipping) an initial

linear acceleration to the right equal to

Pb(b — a)

I + Mb* )

Additional string therefore becomes wrapped around the axle. (Yes, it really does! I
tried it!)

The above linear acceleration must equal (P — F)/ M, from which we obtain

F = I+—Masz_ )
I+ Mb
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Provided F < uMg,there will be no slipping at A, and the yo-yo will roll to the right

without slipping. Thus the yo-yo will roll to the right without slipping, with a linear
acceleration given by equation (1) if

I + Mab P

> 2 . 3)
1+ Mb Mg

However, if n < I+ Mazb P , “4)
1+ Mb Mg

slipping occurs at A. The frictional force is the no longer given by equation (2), but is
given by

F = uMg, (%)
and it acts to the left.

The net force to the right is then P — uMg, so the linear acceleration of C to the right is

P —uMg

Y, (6)

Because of condition (4), this is necessarily positive.

The net counterclockwise moment of the forces about the centre of mass C is
Pa — uMgb. The yo-yo therefore undergoes a counterclockwise angular acceleration
about C of

Pa — uMgb

| (7

By virtue of condition (4), both of these expressions ((6) and (7)) are necessarily positive.

40(d)
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Inner radius a
Outer radius b
String makes angle
6 with horizontal.

TN

A

a

I have drawn the four forces on the yo-yo. Its weight Mg. The normal reaction N of the
table on the yo-yo. The tension P in the string. And the frictional force F of the table on
the yo-yo. From geometry we can find that the perpendicular distance from A to the line
of the string is a + bcos®6.

Let us suppose there is no slipping. (And we shall also suppose that Psin0 < Mg, so
that the yo-yo is not lifted bodily off the table!)

The sum of the clockwise moments of the forces about A is P(a + bcos0), and the

moment of inertia about A is I + Mb*>. The yo-yo therefore undergoes an initial

P(a + bcos9)
1+ Mb°

is no slipping, it undergoes an initial linear acceleration to the right equal to

clockwise angular acceleration about A equal to , and, therefore, if there

Pb(a + bcos0)
I+ Mp>

(D
The above linear acceleration must equal (Pcos® — F')/ M, from which we obtain

F o= IcosO — Il/lab P @)
I+ Mb

The frictional force F' therefore acts to the left, as drawn, if cos©® > Mab/1 , and to the

right if cos® < Mab /1.

At this point it is left to the reader to pursue this further with the same rigour as we did in
the solution to Problem 40(b). As in Problem 40(b), the yo-yo will accelerate towards the
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right, with or without slipping, depending on the magnitude of the coefficient of friction.
The condition for slipping is F > W(Mg — Psin0). If slipping does not occur, the yo-yo
rolls to the right. If slipping occurs, C accelerates to the right, and the yo-yo undergoes a
clockwise angular acceleration. This may result in F being directed to either left or right,
as in Problem 40(b). Apart from the addition of a cosO is many of the equations, the
solutions to Problems 40(b) and 40(d) should be broadly similar. Problem 40(e),
however, has an additional point of interest.

40(e)

Inner radius a

Outer radius b P
String makes angle

0 with horizontal.

N

~ 1

<

F A
I have drawn the four forces on the yo-yo. Its weight Mg. The normal reaction N of the

table on the yo-yo. The tension P in the string. And the frictional force F of the table on
the yo-yo. From geometry we can find that the perpendicular distance from A to the line
of the string is bcos0 — a.

The clockwise moment of P about A is P(bcos® — a). The moment of inertia about A is

I + Mb>. If there is no slipping, the yo-yo turns about A with a clockwise angular
acceleration

P(bcosB — a)
St 1
1 + Mb’ M
The linear acceleration of C to the right is therefore
Pb(bcosO — a

[ + Mb*
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This must be equal to PC#G_F, from which we find that

F o= ([cos@+Mab]P, 3)

I + Mb*

acting to the left.

However, we can see, either from the drawing, or from equation (1), that, if the string is a
little steeper, so that cos® < a/b,the moment of P about A is counterclockwise, and the

yo-yo will roll to the left.

Inner radius a
Outer radius b
String makes angle
0 with horizontal.

TN

A

a

The perpendicular distance from A to the line of the string is now a — bcos®6.

The counterclockwise moment of P about A is P(a — bcos0). The moment of inertia

about A is [ + Mb*. If there is no slipping, the yo-yo turns about A with a
counterclockwise angular acceleration

P(a — bcosH
(—2) . 4)
I+ Mb
The linear acceleration of C to the left is therefore
Pb(a — bcosO
( ) )

I + Mb?
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This must be equal to F—L—cose’ from which we find that

F o= ([cos@+Mab]P’ ©)

[ + Mb*

acting to the left.

In either case, slipping occurs if F > w(Mg — Psin0).

If cos® =a/b, the four forces act through a point (A), and, in the absence of slipping,
the four forces are in static equilibrium. Equation (3) or (6) becomes F = P cos6, which
is otherwise obvious. The yo-yo will roll neither clockwise nor counterclockwise. When
I tried this with an actual physical model, I found that, when 6 < cos ' (a/b), the yO-yo
rolled very easily to the right while wrapping its axle around the string, and that when
8 > cos ™' (a/b), it rolled equally easily to the left. But when 6 = cos™'(a/b), I could pull
on the string quite hard and nothing moved. Only when I pulled with a force greater than

uMg _ ubMg
cosO + usin® a"‘H\/bz —a?

to the right, without rotation.

J, did I manage to drag the yo-yo along the table

41.

Q 2a
¢
“ A
4y
0 'x 2a

There are several routes to the answer. The following is just one possibility. You may
work it quite differently.
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We can consider the thing (which would be called a trapezium in British English and a
trapezoid in American English, but which I’'m going to refer to hereafter as the thing) to
be made up of a rectangle and a triangle. I have indicated, by dots at A, B, C, the
positions of the centres of mass of the rectangle, the triangle, and the thing. I'm taking
the origin of coordinates to be the point O.

The coordinates of the centre of mass A of the rectangle (of mass 2m) are (a,xa).

The coordinates of the centre of mass B of the triangle (of mass m) are (% 2a).

The coordinates (x , y)of the centre of mass C of the thing with respect to the point O
are given by

3mx = 2ma + mx%a

v = 1 4
3my = 2mx5a + mx3a.

=1
Il

Hence:

oz
N}

<
Il

N1
IS}

Here is a summary of some distances:

Coordinates of A with respectto O: (a, 5 a)
Coordinates of B with respect to O:  (%a, %a)

Coordinates of C with respect to O:  (2a, Za)

Coordinates of C with respect to A:  (1a, 2a)

Coordinates of C with respect to B:  (—2a, —2a)

Coordinates of B with respect to Q:  (—3a, $a)

It’s easy to make a mistake, so it may be worthwhile at this stage to verify that the three
points ABC are collinear. There are several ways of doing this. One way is to make use
of equation 2.2.12 in my Celestial Mechanics notes. This says that the area of a triangle
enclosed by three points is



2V Y2 Y3
1 1 1
4 10
L5 3
Therefore, if we find that % % % is zero, this will show that the three points are
1 1 1

collinear. If it isn’t zero, we’ve made a mistake. If it is zero, we still have to assure
ourselves that C is the correct distance between A and B, which should be one third of the
distance from A to B. Both of these tests seem to be satisfied, so all is well so far.

Now for the moments and products of inertia.

We’ll start with the rectangle.

Moment of inertia about a horizontal axis through its centre of mass

2 2
= 3@2m)(Fa)” = ¢ma”.

Moment of inertia about a vertical axis through its centre of mass

2

= L2m)a® =2ma".

-3

Product moment of inertia with respect to horizontal and vertical axes through its centre
of mass

= 0.
Now let us apply the parallel axes theorem and move to C:

Moment of inertia of the rectangle about a horizontal axis through the centre of mass of
the thing

— 1 2 5 N2 _ 26 2
A = gma” + 2m(55a)" = grma’.

Moment of inertia of the rectangle about a vertical axis through the centre of mass of the
thing
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= 24,2 1.\2 — 56,2
B.. = $ma” + 2m(ga)” = 3yma’.

Product moment of inertia with respect to horizontal and vertical axes through the centre
of mass of the thing.

H., = 0+ 2mGa)Ea) = Zma’.

rect

Now for the triangle

Moment of inertia about a horizontal axis through its centre of mass

= %ma2 - m(%a)2 =L ma".

[In calculating this moment of inertia of the triangle, I first wrote down its moment of
inertia about its base; then I went to its centre of mass, using the parallel axes theorem.]

Moment of inertia about a vertical axis through its centre of mass

= $mQa)® — m(Gx2a)* = Fma’.

[In calculating this moment of inertia of the triangle, I first wrote down its moment of
inertia about its right hand edge; then I went to its centre of mass, using the parallel axes
theorem. |

Product moment of inertia with respect to horizontal and vertical axes through its centre
of mass. We are going to have to refer carefully to Section 2.11 of Chapter 2. I find that
the product moment of inertia of the triangle with respect to horizontal and vertical axes

through its centre of mass is

+Lm(2a)(a) = +%ma’.

Now let us apply the parallel axes theorem and move to C:

Moment of inertia of the triangle about a horizontal axis through the centre of mass of the
thing

2 2

+ m(%a)2 = 2 ma”.

— L
Aria = jg/na 162
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Moment of inertia of the triangle about a vertical axis through the centre of mass of the
thing

— 2,42 2.2 — 22,2
By, = sma” + m(5a)” = {yma”.

Product moment of inertia with respect to horizontal and vertical axes through the centre
of mass of the thing.

— 1,2 2 5.7 — 29 .2
wia = jgma; + m(=ga)-3a) = j;;ma’.

H

Now for the moments and product of inertia of the entire thing with respect to horizontal
and vertical axes through its centre of mass. [I'll call these moments A, B and H.

- 26,2 L 59 .2 _ 37,2

A = spma” + fsma” = srma.
= 56,2 4 2,2 — 26,2

B—81ma + grma” = 7ma.
_ 5 2, 29 _ 13 2

H = gyma” +{5m = gma-.

In units of 5—14ma2, these are A =37, B=52, H =13. We now have to find the

orientation of the principal axes, which are inclined to the horizontal and vertical axes by

angles given by tan20 = 2H = 26 = 26 . That s,
B-A 52-37 15

6 = 30°.009 180 and 120°.009 180 .

The principal moments of inertia are given by

Acos’0 — 2H sinBcos® + Bsin’ 0.

With the above two angles I obtain, in units of 5—14ma2, 29.491669 and 59.508331, or, in

terms of ma> ,

A, = 0.546142ma> , B, = 1.102006ma’.
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I have chosen to denote the smaller principal moment of inertia by A, and the larger by
By, which is the more usual convention. As a check on the arithmetic, note that the trace
of the inertia tensor is unaltered by the rotation. Thatis, A,+ By = A + B.

The lengths of the axes of the momental ellipse are inversely proportions to the square
roots of the principal moments of inertia. That is to say the ratio of the semi major axis to

the semi minor axis is a_ 1{% = 1.420493. This means that its eccentricity
b 0.546142

s 0.71022.

The area of the thing is 3a”*, and, if I draw the ellipse so that its area is equal to the area
of the thing, then Tab = 3a®. This gives a = 1.16468a, b = 0.81991a.

I have drawn the momental ellipse below superimposed upon the thing, with their
centroids coinciding, and their areas equal, so that the moments if inertia of either body
about any axis in the plane through the centroid are equal.

42.

Before starting, it might be worth noting that there are no horizontal forces on the
system. The x coordinate of the centre of mass therefore remains fixed. The height of
the centre of mass, however, varies as the pendulum swings; during the motion the
vertical force exerted on the system by the table varies periodically.
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We can do this problem by Lagrangian methods. That is to say, we start by indicating,
with blue arrows, the velocity components, and then we write down the kinetic and
potential energies of the system.

16

Now we can start:

T = 1M&* + Lm(E + 176° + 2105cos6),

Vv

constant — mgl cos 6.
Apply the Lagrange equations to x and to 0 to obtain the required result:

(M + m)¥ + ml(Bcos® — 6%sin0) = 0,

10 + ¥cos® — xsinBO = —gsin.
On using the specified approximations, we obtain

(M + m)¥ + ml® =0,
6 +% + g0 = 0.

On elimination of X between these two equations, we obtain

_ _(M+m)ge
Ml

and hence P = 2xn L
(M +m)g
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43. According to Chapter 7, Section 7.1, the range on a horizontal plane for a projectile

A . V7sin2a : :
launched with initial speed Vis ——————- Inthiscase, V =V cos5 0, SO the range R
8
V2 2 1 .
. H COS Eocsm2oc 2y
is = = kcos S osin 20
8

Question: Differentiate this now, or first do some trigonometric manipulation and then
differentiate it? I’m not sure which is best, but I am going to differentiate it now:
1 dR

o = —%sinasin2o¢ + 20082%06008206
o

= —sinocosa + (1 +cosoc)(2cos206—1) = 0.

Then, with sin> o = 1—cos?>a, and ¢ = cosa and some routine algebra, we arrive at

3¢ +2¢2=2c-1=0

This cubic equation has one positive and two negative real roots, but we are searching for
a solution with 0 < a0 < 90° so we are looking for the positive real root, which is

¢ =0.767 591 88, corresponding to o = 39°51'.

44. The condition for stability, from Chapter 16 Section 16.9, equation 16.9.5 is that
Ak?

> HC.

k* for a filled circle of radius a is %az . If the length of the cylinder is /, the volume

2

immersed is Asl, so the left hand side of the inequality is % .
s

The depth of the centre of mass is I(s— %) and the depth of the centre of buoyancy is

2
Lis, sothat HC = LI(1 —s). The condition for stability is, then, % > L1 -s).

With L =1/(2a), this gives, for the condition for stability,
1

/8s(1 —s)

L<
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UNSTABLE

length L

0.8+

0.6 B

0.4+ STABLE J

0.2 B

0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

density s

This function is least for s = % , L< 1 = (0.707. For any length less than this, the

NG

system is stable for any density. With L = 1, the inequality can be written
852 —8s+1> 0 , so that s must be less than 0.146 or greater than 0.854.

45. Before doing the problem, let’s just have a look at the “interesting” property of a (4,
5, 6) triangle.

-
-
-
-
-

-
-
-
-
-
-
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Calculate A by the cosine rule: 16 = 25 +36 — 60cosA , hence cosA =

Blw

Calculate C by the cosine rule: 36 = 16 + 25 — 40cosC , hence cosC = %

But cos2A = 2cos’A — 1 = % Therefore C = 2A.

The external angle at B is 3A.

The angles are A

41°4096 C = 82°8192 B = 55°7711 (cosB =1¢)

Supplement of B = 124°.2289

It is not the case that a triangle with one angle equal to twice another one is necessarily a
(4, 5, 6) triangle.

After that diversion, let’s move on to the given problem - except that we’ll generalize it
to make the length of the rod 2/, and the lengths of the strings a and b.

C

The only physics involved is to recall that, if three coplanar forces are in equilibrium,
they must be concurrent at a point - in this case the point C. This means that C must be
vertically above the mid-point of the rod.

After that, there is no more physics; the rest is “just” geometry. All we have to do is to
find O in terms of a and b.



If C is to be directly above the mid-point, then AN = MB. Thatis:
bcos(A + 0) = acos(B —90).
This quickly results in

bcosA — acosB

tan@ = — - .
bsinA + asinB

% = 0.8, B =180° — 3A,and A = 41°.4096 .

, a
In our particular example, 3

cosA + 0.8cos3A

Thus tan@ = — - ,
sinA + 0.8sin3A

and 0 = 12°78

If the weight of the rod is mg, I’ll leave it to you to work out the tensions in the strings.
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46.  The only physics involved is to recall that, if three coplanar forces are in
equilibrium, they must be concurrent at a point - in this case the point C. This means that
C must be vertically above the mid-point. Also, since the planes are smooth, the forces
at A and B are perpendicular to the planes.

The rest is geometry - almost the same as in Problem 45, except that in this
problem we are given the angles a and [3 rather than the lengths a and b. Start by
convincing yourself that the two angles at C are indeed a and 3, as marked. Now all that
is required is to express 0 in terms of a and J3.

Since the mid-point of the rod must be vertically below C, we must have AN = MB.
That is:

bsino = asinf.
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By the Sine Rule, 2 = S%n B ,so that sinosin B = sinPBsin A
a sin A

But A =90° —(aa+6) and B = 90° — (B —0),s0
sinoccos(B — 0) = sinPcos(a + 0),

which quickly yields ~ tan® = Z(cota — cotf). In our particular example, this is

tan@ = %(\/5 —1), 6=20°1 If you wish, you could work out the forces at A and B in
terms of the weight of the rod.

47,
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I have drawn above the three forces on the rod. The forces at the ends of the rod each
make an angle A to the normal to the surface, where tanA = W, and the three coplanar
forces, being in static equilibrium, are concurrent at a point. I have also introduced the
angle @, given by cos® = [/a. All we have to do is to find 6 in terms of A and & - that

is to say, in terms of W and [/ a.

Fortunately I found the following formula for a triangle in an old geometry book:

coty = J(cota — cotp)

I’ll leave you to see if you can derive it. The book actually gave a formula for a more
general case in which the base of the triangle isn’t divided equally. For the case

the formula is (1+ x)coty = cotaw — xcotf.
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You can use this in various problems in geometric optics, where you are trying to find
relations between object distance, image distance and radius of curvature or focal length.
However, for this problem, we need only the simpler formula, where the base of the
triangle is equally divided.

On applying the simpler formula to our present problem we obtain

tan® = Llcot(® — L) — cot(® + 1))

and the problem is solved.

Below, I illustrate some examples. Going from left to right we have a
short(//a = 0.2),amedium (//a = 0.4) and along (I/a = 0.6)rod. Going

from top to bottom we have a slippery (W = 0.5), a medium (L = 1.0) and a
sticky (W = 1.5) surface.

Inside each drawing, I tabulate

l[/a

eO

The long (I/a = 0.6) rod will rest vertically for any n > 1.33. But, while it will not slip,

the equilibrium is no longer stable, and the rod will tip after an infinitesimal
counterclockwise displacement.
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0.2 0.4 0.6
0.5 0.5 0.5
28° 32° 42°

0.4 0.6
1.0 1.0
56° 74°

0.6

1.5

90°
/
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48. If you do the problem by any of the three methods shown in Chapter 9 Section 9.4,
i.e. by equilibrium of forces, or by potential energy considerations, or by virtual work,
you will arrive at

(2 + 4p)c? — 2ue — (1 +2u) =0,
where ¢ = cos%@ and W =m/M. Check by putting u= % to verify that this becomes
12¢*> — ¢ — 6 =0 as in Chapter 9.

The solution for ¢ (written in a form that is easy for computation) is

nt N2+ W8 +9u)

B 2(1 +2)

The + sign gives the stable solution; the — sign gives the unstable solution. I’ll deal here

only with the stable solution. I'll leave you, the reader, to deal with the unstable solution.
For u = %, this gives ¢ =5 and hence 8 = 82° 49" as in Chapter 10.

Here is a graph of 0 versus m/M. 1If m is very small, the rod hangs almost vertically.
If m is very large, the rod is pulled almost horizontal.

90

80 .

70 - .

60 - -

50 - .

40 - ]

0 degrees

30 - -

20 - =
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Before we start, in what direction shall be draw the force R? Easy! - if three coplanar
forces are in equilibrium that must be concurrent at a point. That’s how I have drawn it.
Now let’s start.

(a) By geometry, the angles 6 and 20 are as shown. The perpendicular distance from A
to the line of action of the force F is therefore 3asin 20, and to the line of action of the
force Mg is 2asin 0. Therefore

2Mgasin® = 3Tasin20 = 6TasinBcosO

Therefore T = {Mgsech.

The vertical component of R, which we are calling F, the frictional force, is given by

F = Mg —Tcos® = Mg(l — }secOcos®) = 3 Mg.

The horizontal component of R, which we are calling N, the normal reaction of the wall
on the rod, is given by

N = Tsin® = ;MgsecBsin® = ;Mg tan®.

And R = F?>+N? = Mg,|5 + %tanze = I Mgq/4 +tan’ @ = 1Mgy3 +sec” 0.

(b) If the rod is in limiting static equilibrium, then p = % = 2cot0 and therefore

tan@ =

9

u

and the other trigonometric ratios are calculated from

4+

It quickly follows that
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Mg+J4 + 1> 2MgAl1 + u?

3u _ 3u 3u

W

Here are graphs of 6 and the four forces versus | and 6, and the four forces versus 6.
Are they at least qualitatively what you would expect? For example, no force, however
great, is going to hold the rod horizontally if the coefficient of friction is zero.. That is
why all the forces go to infinity as 6 goes to 90°. Or again, is it obvious to you that the
frictional force F' (the vertical component of R) is constant and independent of 0 or of 1?
It is not immediately obvious to me. Think about it.
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(c) Now let us do the problem again, using the principle of virtual work. Here is the
drawing again, except that I have added the points C'and D', being the horizontal
projections of C and D on to the wall, and I have drawn the horizontal and vertical
components, N and F of R.
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We note the following lengths:

HD' = 3acos
HC' = 4acos9
DD' = 3asin6
HA = 6asin®

If 6 were to increase by 66, HD'would increase by —3asin 656 .
If 6 were to increase by 66, HC'would increase by —4asin630.
If © were to increase by 60, DD'would increase by +3acos030.
If © were to increase by 60, HA would increase by —6asin 600 .

N would do no work.
The work done by F would be + 6aF sin 630
The work done by Mg would be —4aMg sin 636

The work done by the horizontal component of 7" would be
—Tsin O X 3acos000 = —3aT sin Ocos 600

The work done by the vertical component of 7 would be
+Tsin 0 X 3asin 000 = +3aT sin 6 cos 660

The total work done would be +6aF sin©30 — 4aMg sin 630 .

Equate this to zero to obtain F' = %Mg .

The remaining forces are then easily obtained by conventional methods.

It is interesting to note that 7 does no work. (The length of the string is constant.)
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50.

6 ft wicscO

=

T

wosecO

The length of the blue lineis [ = w,csc® + w,secO

By calculus, this is least for tan® = {/% .

2

The ladder cannot be longer than this.

For w, = 6ft and w, =8ft,0 = 42°257,
from which we find that the ladder cannot be longer than 19 ft 8.7 in.
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51. All we have to do is to solve the two equations in A; and A, embedded in the
paragraph following equation 11.5.26 in Chapter 5, namely:

In(X, /A,) _ 0
A=)
A M
and M ﬂ hrh ﬁ M = v, (2)
Ay =2 |\ Ay A,

where xo = 3m, ¢t =2 s, and Upax = 0.5 m s_l, and recall how A, and A, are related
to p and .

I have found easier equations to solve than these two. This is how I tried

Let x = % and y = A,. (The symbol x has nothing to do, of course, with the

2
symbol x.) The equations then become

In x
=1y 3)
x -1
_r _x
o [x” - x”} = Vo s )
1-x
and hence, by elimination of y:
1 1 _x
XInx 1-x 1-x
(x) = X - X +C =0, 5
! (1—x)2( }
where C = ‘Ymax _ T
X0

To make use of the Newton-Raphson process, we need f'(x), which is not the easiest
derivative in the world. I found:
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X X

xInx | x'"“(1-x+xlnx) x'"*(1-x+Inx)

P =1 (- x)° (- x)°

(6)

NIEEEaE: x)lnx](xllx lxxl
1-x)

Perhaps this can be simplified, or it may be easier just to type it directly into a computer.

For the Newton-Raphson process we need a first guess. On looking at equations 11.5.19,
reproduced here:

A [ R MR B2 (B0 11519

we see that xis between 0 and 1. With a first guess of 0.5, I found that, to attain a
precision of one part in 107, I needed 24 iterations (a most unusually large number for
Newton-Raphson iteration) to reach x = 0.409 396. A better first guess of 0.4 was not
much better (21 iterations) and a stupid first guess of 0.9 reached the same answer in 28
iterations.

Now, from equation (3) we find y = 0.756 067 sl

We recall that y =A; and x = A, /A, , so that

A, = 0.309531s, A, =0.756 067 s (7)

We soon find, from equations 11.5.19, that Yy = A, + A, and ®, =,/A,A, so that

¥Y=1.065598 s and , = 0.483 7625 .




