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CHAPTER 3 

SYSTEMS OF PARTICLES 

 

3.1   Introduction 

 

By systems of particles I mean such things as a swarm of bees, a star cluster, a cloud of 

gas, an atom, a brick.  A brick is indeed composed of a system of particles – atoms − 

which are constrained so that there is very little motion (apart from small amplitude 

vibrations) of the particles relative to each other.  In a system of particles there may be 

very little or no interaction between the particles (as in a loose association of stars 

separated from each other by large distances) or there may be (as in the brick) strong 

forces between the particles.  Most (perhaps all) of the results to be derived in this 

chapter for a system of particles apply equally to an apparently solid body such as a 

brick.  Even if scientists are wrong and a brick is not composed of atoms but is a genuine 

continuous solid, we can in our imagination suppose the brick to be made up of an 

infinite number of infinitesimal mass and volume elements, and the same results will 

apply. 

 

What sort of properties shall we be discussing?  Perhaps the simplest one is this:  The 

total linear momentum of a system of particles is equal to the total mass times the velocity 

of the center of mass.  This is true, and it may be “obvious” − but it still requires proof.  It 

may be equally “obvious” to some that “the total kinetic energy of a system of particles is 

equal to ,2

2
1
vM  where M is the total mass and v  is the velocity of the center of mass”  − 

but this one, however “obvious”, is not true! 

 

Before we get round to properties of systems of particles, I want to clarify what I mean 

by the moment of a vector such as a force or momentum.  You are already familiar, from 

Chapters 1 and 2, with the moments of mass, which is a scalar quantity. 

 

 

3.2   Moment of a Force 

 

First, let’s look at a familiar two-dimensional situation.   In figure III.1 I draw a force F 

and a point O.  The moment of the force with respect to O can be defined as 

Force times perpendicular distance from O to the line of action of F. 
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Alternatively, (figure III.2) the moment can be defined equally well by 

Transverse component of force times distance from O to the point of application of the 

force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Either way, the magnitude of the moment of the force, also known as the torque, is 

.sin θrF   We can regard it as a vector, τ , perpendicular to the plane of the paper: 

 

     . Frτ ×=      3.2.1 

 

Now let me ask a question.  Is it correct to say the moment of a force with respect to (or 

“about”) a point or with respect to (or “about”) an axis? 

 

In the above two-dimensional example, it does not matter,  but now let me move on to 

three dimensions, and I shall try to clarify. 

 

In figure III.3, I draw a set of rectangular axes, and a force F, whose position vector with 

respect to the origin is r. 
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The moment, or torque, of F with respect to the origin is the vector 

   

     . Frτ ×=      3.2.2 

 

The x-, y- and z-components of ττττ are the moments of  F with respect to the x-, y- and z-

axes.  You can easily find the components of ττττ by expanding the cross product 3.2.2: 

 

  ( ) ( ) ( ),ˆˆˆ
xyzxyz yFxFxFzFzFyF −+−+−= zyxτ    3.2.3 

 

where z,y,x ˆˆˆ are the unit vectors along the x, y, z axes.  In figure III.4, we are looking 

down the x-axis, and I have drawn the components Fy and Fz, and you can see that, 

indeed, τx  =  yz zFyF − . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dimensions of moment of a force, or torque, are ML
2
T

−2
, and the SI units are N m.  

(It is best to leave the units as N m rather than to express torque in joules.) 

 

 

3.3   Moment of Momentum 

 

In a similar way, if a particle at position r has linear momentum p  =  mv, its moment of 

momentum with respect to the origin is the vector l defined by 

 

     ,prl ×=      3.3.1 
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and its components are the moments of momentum with respect to the axes.  Moment of 

momentum plays a role in rotational motion analogous to the role played by linear 

momentum in linear motion, and is also called angular momentum.   The dimensions of 

angular momentum are ML
2
T

−1
.  Several choices for expressing angular momentum in SI 

units are possible; the usual choice is J s (joule seconds). 

 

 

3.4   Notation 

 

In this section I am going to suppose that we n particles scattered through three-

dimensional space.  We shall be deriving some general properties and theorems – and, to 

the extent that a solid body can be considered to be made up of a system of particles, 

these properties and theorems will apply equally to a solid body. 

 

In the figure III.5, I have drawn just two of the particles, (the rest of them are left to your 

imagination) and the centre of mass C of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A given particle may have an external force Fi acting upon it.  (It may, of course, have 

several external forces acting on it, but I mean by Fi the vector sum of all the external 

forces acting on the ith particle.)  It may also interact with the other particles in the 

system, and consequently it may have internal forces Fij acting upon it, where j goes 

from 1 to n except for i.  I define the vector sum ∑= iFF  as the total external force 

acting upon the system.   
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I am going to establish the following notation for the purposes of this chapter.  

 

Mass of the ith particle   =   mi 

 

Total mass of the system    ∑= imM  

 

Position vector of the ith particle referred to a fixed point O:   zyxr ˆˆˆ
iiii zyx ++=  

 

Velocity of the ith particle referred to a fixed point O:   ii vr or&     (Speed = vi ) 

 

Linear momentum of the ith particle referred to a fixed point O:   iii m vp =  

 

Linear momentum of the system:    iii m vpP ∑∑ ==  

 

External force on the ith particle:    iF  

 

Total external force on the system:  ∑= iFF  

 

Angular momentum (moment of momentum) of the ith particle referred to a fixed point 

O:    

iii prl ××××=  

 

Angular momentum of the system:   ∑∑ == iii prlL ××××  

 

Torque on the ith particle referred to a fixed point O:   iii Frτ ××××=  

 

Total external torque on the system with respect to the origin: 

 

    .iii Frττ ×== ∑∑       

 

Kinetic energy of the system:   (We are dealing with a system of particles – so we are 

dealing only with translational kinetic energy – no rotation or vibration): 

 

∑= 2

2
1

iimT v  

 

Position vector of the centre of mass referred to a fixed point O:  zyxr ˆˆˆ zyxi ++=   

 

     The centre of mass is defined by   iimM rr ∑=  

 

Velocity of the centre of mass referred to a fixed point O:  vr or&     (Speed = v  ) 
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For position vectors, unprimed single-subscript symbols will refer to O.  Primed single-

subscript symbols will refer to C.  This will be clear, I hope, from figure III.5. 

 

Position vector of the ith particle referred to the centre of mass C:    iii rrr' −=  

 

Position vector of particle j with respect to particle i:  ijji rrr −=  

 

(Internal) force exerted on particle i by particle j:     ijF  

(Internal) force exerted on particle j by particle i:     jiF  

 

If the force between two particles is repulsive (e.g. between electrically-charged particles 

of the same sign), then jiF  and jir are in the same direction.  But if the force is an 

attractive force, jiF  and jir are in opposite directions. 

 

According to Newton’s Third Law of Motion (Lex III),  jiij FF −=  

 

Total angular momentum of system referred to the centre of mass C:    CL  

 

Total external torque on system referred to the centre of mass C:    Cτ  

 

 

For the velocity of the centre of mass I may use either .or vr&  

 

O is an arbitrary origin of coordinates.  C is the centre of mass.   

 

 

Note that    ii rrr ′+=      3.4.1  

 

and therefore     ii rrr &&& ′+=  ;     3.4.2 

 

that is to say    ii vvv ′+= .     3.4.3 

 

Note also that    .0=′∑ iim r      3.4.4 

 

Note further that 

 

 ( ) .MMmmmm iiiiiii 0=−=−=−=′ ∑∑∑∑ vvvvvvv   3.4.5 

 

That is, the total linear momentum with respect to the centre of mass is zero. 
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Having established our notation, we now move on to some theorems concerning systems 

of particles.  It may be more useful for you to conjure up a physical picture in your mind 

what the following theorems mean than to memorize the details of the derivations. 

 

3.5   Linear Momentum 

 

Theorem:  The total momentum of a system of particles equals the total mass times the 

velocity of the centre of mass. 

 

Thus:            ( ) .0+=′+== ∑∑ vvvvP Mmm iiii    3.5.1 

 

 

3.6   Force and Rate of Change of Momentum 

 

Theorem:  The rate of change of the total momentum of a system of particles is equal to 

the sum of the external forces on the system. 

 

Thus, consider a single particle.  By Newton’s second law of motion, the rate of change 

of momentum of the particle is equal to the sum of the forces acting upon it: 

 

    .∑+=
j

ijii FFp&    (j  ≠  i)  3.6.1 

 

Now sum over all the particles: 

 

   ∑∑∑ +=
i j

ij

i

i FFP&    (j  ≠  i) 

 

        ∑∑∑∑ ++=
j i

ij

i j

ji FFF
2
1

2
1  

 

        ( ).
2
1∑∑ ++=

i j

ijji FF F      3.6.2 

 

But, by Newton’s third law of motion, ijji FF +  = 0, so the theorem is proved. 

    

Corollary:  If the sum of the external forces on a system is zero, the linear momentum is 

constant.  (Law of Conservation of Linear Momentum.) 

 

 

3.7   Angular Momentum 

 

Notation:   CL = angular momentum of system with respect to centre of mass C. 

        L  = angular momentum of system relative to some other origin O. 

        r  =  position vector of C with respect to O. 
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        P  = linear momentum of system with respect to O. 

                   (The linear momentum with respect to C is, of course, zero.) 

 

Theorem:   .C PrLL ×+=      3.7.1 

 

Thus:  ( ) ( ) ( )
iiiiiiii mm v'vr'rvrprL +×+=×=×= ∑∑∑  

 

       ( ) ( )
iiiiiii mmm p'r'vr'v'rvr ×+×+×+×= ∑∑∑∑  

 

       ( ) .00 C Lvrvr +×+×+×= M  

 

∴    .C PrLL ×+=  

 

Example.    A hoop of radius a rolling along the ground (figure III.6): 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

 

The angular momentum with respect to C is LC = ICω, where IC is the rotational inertia 

about C.  The angular momentum about O is therefore 

 

 aMIL v+ω= C   =  ICω   +  Ma
2
ω  =  ( IC +  Ma

2
 )  =  Iω,  

 

where I =  IC +  Ma
2
 is the rotational inertia about O. 

 

 

3.8    Torque 

 

Notation:    Cτ  =  vector sum of all the torques about C. 

                    τ    =  vector sum of all the torques about the origin O. 

         F   =  vector sum of all the external forces. 

 

vMP =  

a/v=ω  

O 

C 

FIGURE III.6 
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Theorem:       .C Frττ ××××+=      3.8.1 

 

Thus:  ( ) iiii Frr'Frτ ×+=×= ∑∑    

 

      .∑∑ ×+×= iii FrFr'  

 

∴       .C Frττ ××××+=  

 

 

3.9   Comparison 

 

At this stage I compare some somewhat similar formulas. 
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3.10   Kinetic energy 

 

We remind ourselves that we are discussing particles, and that all kinetic energy is 

translational kinetic energy. 

 

Notation:    CΤ  =  kinetic energy with respect to the centre of mass C. 

                    T   =  kinetic energy with respect to the origin O. 

  

Theorem:   .2

2
1

C vMTT +=      3.10.1 

Thus:   
( ) ( )

.''

''

2

2
12

2
1

2
12

2
1

∑∑∑
∑∑

++=

++==

•

•

iiiii

iiiii

mmm

mmT

vv

v

vv

vvvv
 

 

∴   .2

2
1

C vMTT +=   

 

Corollary: If  0=v ,   CTT = .   (Think about what this means.) 

 

Corollary:        For a non-rotating rigid body, CT  = 0, and therefore .2

2
1
vMT =  

                        (Think about what this means.) 
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3.11   Torque and Rate of Change of Angular Momentum 

 

Theorem:  The rate of change of the total angular momentum of a system of particles is 

equal to the sum of the external torques on the system. 

 

Thus:    ∑ ×=
i

ii prL      3.11.1 

 

∴   .i

i

ii

i

i prprL &&& ×+×= ∑∑      3.11.2 

 

But the first term is zero, because  ir&  and ip are parallel. 

 

Also    .∑+=
j

ijii FFp&      3.11.3 

 

∴   

.ij

i j

ii

i

i

j

ij

i

ii

i

i

j

iji

i

i

FrFr

FrFrFFrL

∑∑∑

∑∑∑∑∑

×+×=

×+×=













+×=&

 

 

But ∑∑ =
i j

ij 0F by Newton’s third law of motion, and so ij

i j

i Fr∑∑ × is also zero.  

 

Also,  ττττ=×∑ i

i

i Fr , and so we arrive at  

 

    ττττ=L& ,      3.11.4 

 

which was to be demonstrated. 

 

Corollary:  If the sum of the external torques on a system is zero, the angular momentum 

is constant.  (Law of Conservation of Angular Momentum.) 
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3.12    Torque, Angular Momentum and a Moving Point 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

In figure III.7 I draw the particle mi, which is just one of n particles, n − 1 of which I 

haven’t drawn and are scattered around in 3-space.  I draw an arbitrary origin O, the 

centre of mass C of the system, and another point Q, which may (or may not) be moving 

with respect to O.  The question I am going to ask is:  Does the equation ττττ=L&  apply to 

the point Q?  It obviously does if Q is stationary, just as it applies to O.  But what if Q is 

moving?  If it does not apply, just what is the appropriate relation?    

 

The theorem that we shall prove – and interpret − is 

 

    .' QQQQ rrτL &&& ×+= M     3.12.1 

 

We start:  ( ) ( )[ ].QQQ vvrrL −×−= ∑ iii m     3.12.2 

 

∴ .)()()()( QQQQQ vvrrvvrrL −×−+−×−= ∑∑ iiiiii mm &&&&&    3.12.3 

 

The second term is zero, because vr =& . 

Continue: 

 

� 

�Q 
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mi 

C 

r  

Qr  

rrr −= QQ'  

Qrr −i  

ir  

i'r  

III.7 FIGURE  

O 
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 .)( QQQQQ ∑∑∑ ×+×−×−= vrvrvrrL &&&&
iiiiii mmm    3.12.4 

 

Now ,iiim Fv =&  so that the first term is just ττττQ. 

 

Continue: 

 

                        

.( QQQ

QQQQ

QQQQ

r)rr

rrrr

vrvrL

&&

&&&&

&&&

××××−−−−++++ττττ====

××××++++××××−−−−ττττ====

××××++++××××−−−−ττττ==== ∑∑∑∑

M

MM

Mm ii Q

    

  

 

∴                                   .' QQQQ rrL &&& ×+= Mττττ                            Q.E.D.  3.12.5 

 

Thus in general, QQQQ but, ττττττττ =≠ LL &&  under any of the following three circumstances: 

 

   i.   0'Q =r   -  that is, Q coincides with C. 

 

  ii.    0Q =r&&  -  that is, Q is not accelerating. 

 

 iii.    Qr&&  and  Q'r are parallel, which would happen, for example, if O were a   

          centre of attraction or repulsion and Q were accelerating towards or away                            

          from O. 

 

 

3.13    The Virial Theorem 

 

First, let me say that I am not sure how this theorem got its name, other than that my 

Latin dictionary tells me that vis, viris means force, and its plural form, vires, virium is 

generally translated as strength. The term was apparently introduced by Rudolph 

Clausius of thermodynamics fame. We do not use the word strength in any particular 

technical sense in classical mechanics, although we do talk about the tensile strength of a 

wire, which is the force that it can summon up before it snaps.  We use the word energy 

to mean the ability to do work; perhaps we could use the word strength to mean the 

ability to exert a force.  But enough of these idle speculations. 

 

Before proceeding, I define the quantity 

 

    2

i
i

irm∑=I       3.13.1 

 

as the second moment of mass of a system of particles with respect to the origin.  As 

discussed in Chapter 2, mass is (apart from some niceties in general relativity) 
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synonymous with inertia, and the second moment of mass is used so often that it is nearly 

always called simply “the” moment of inertia, as though there were only one moment, the 

second, worth considering.  Note carefully, however, that you are probably much more 

used to thinking about the moment of inertia with respect to an axis rather than with 

respect to a point.  This distinction is discussed in Chapter 2, section 19.  Note also that, 

since the symbol I tends to be heavily used in any discussion of moments of inertia, for 

moment of inertia with respect to a point I am using the symbol I. 

 

I can also write equation 3.13.1 as  

 

    )( .
i

i
iim rr∑=I      3.13.2 

 

Differentiate twice with respect to time: 

 

    ,)(2 ii
i

im rr &&
•∑=I      3.13.3 

 

and    )(2 2

iii
i

i rm rr &&&&&
•+∑=I     3.13.4 

 

or    ii
i

i mT rr &&&&
•∑+= 24I ,    3.13.5  

 

where T is the kinetic energy of the system of particles.  The sums are understood to be 

over all particles - i.e. i from 1 to n. 

 

iim r&&  is the force on the ith particle.  I am now going to suppose that there are no external 

forces on any of the particles in the system, but the particles interact with each other with 

conservative forces, Fij being the force exerted on particle i by particle j.  I am also going 

to introduce the notation ijji rrr −= , which is a vector directed from particle i to 

particle j.  The relation between these three vectors in shown in figure III.8. 
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I have not drawn the force Fij, but it will be in the opposite direction to rji if it is a 

repulsive force and in the same direction as rji if it is an attractive force. 

 

The total force on particle i is ,∑
≠ij

ijF  and this is equal to .iim r&&   Therefore, equation 

3.13.5 becomes 

 

    .24 ∑∑+=
≠

•

ij
ij

i
iT FrI&&     3.13.6 

 

Now it is clear that 

 

 

    .ij

i ij

ij

ij

ij

i

i FrFr •• ∑∑∑∑
<

=
≠

    3.13.7 

However, in case, like me, you find double subscripts and summations confusing and you 

have really no idea what equation 3.13.7 means, and it is by no means at all clear, I write 

it out in full in the case where there are five particles.  Thus: 

 

   

.)(

)(

)(

)(

)(

545352515

454342414

353432313

252423212

151413121

FFFFr

FFFFr

FFFFr

FFFF

FFFFrFr

++++

++++

++++

++++

+++=

•

•

•

•

••∑∑
≠

r

ij

ij

i

i

 

 

Now apply Newton’s third law of motion: 

               

   

.)(

)(

)(

)(

)(

545352515

544342414

534332313

524232212

514131211

FFFFr

FFFFr

FFFFr

FFFF

FFFFrFr

++++

−+++

−−++

−−−+

−−−−=

•

•

•

•

••∑∑
≠

r

ij

ij

i

i

 

 

Now bear in mind that 2112 rrr =− , and we see that this becomes 
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5454

53354343

525242423232

5151414131312121

rF

rFrF

rFrFrF

rFrFrFrFFr

•

••

•••

••••

≠

+

++

+++

+++=∑∑ •

ij

iji

i

   

and we have arrived at equation 3.13.7.  Equation 3.13.6 then becomes  

 

    .24 ij
i ij

ijT Fr •

<

∑∑+=I&&     3.13.8 

 

This is the most general form of the virial equation.  It tells us whether the cluster is 

going to disperse (I&& positive) or collapse (I&& negative) – though this will evidently 

depend on the nature of the force law Fij. 

 

 

Now suppose that the particles attract each other with a force that is inversely 

proportional to the nth power of their distance apart.  For gravitating particles, of course, 

n = 2.  The force between two particles can then be written in various forms, such as 

 

    ,ˆˆ
1 ijn

ij

ijn
ij

ijijij
r

k

r

k
F rrrF

+
−=−=−=    3.13.9 

 

and the mutual potential energy between two particles is minus the integral of  drFij , or 

 

.
)1( 1−−

−=
nij

rn

k
U      3.13.10 

 

I now suppose that the forces between the particles are gravitational forces, such that 

 

    .
3 ij

ij

ji

ij
r

mGm
rF −=      3.13.11 

 

Now return to the term ,ijij Fr •  which occurs in equation 3.13.8: 

 

 

.)1(
11 ijn

ij

ijijn
ij

ijij Un
r

k

r

k
−=−=−=

−+
•• rrFr   3.13.12 

 

    

 

Thus equation 3.13.8 becomes 
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    ,)1(24 UnT −+=I&&     3.13.13 

 

where T and U are the kinetic and potential energies of the system. Note that for 

gravitational interaction (or any attractive) forces, the quantity U is negative.   Equation 

3.13.13 is the virial theorem for a system of particles with an r
−−−−2

 attractive force 

between them.  The system will disperse or collapse according the sign of .I&&    For a 

system of gravitationally-interacting particles, n = 2, and so the virial theorem takes the 

form 

 

    .24 UT +=I&&      3.13.14 

 

Of course, as the individual particles move around in the system, I, T and U are all 

changing from moment to moment, but always in such a manner that equation 3.13.13 is 

satisfied. 

 

In a stable, bound system, by which I mean that, over a long period of time, there is no 

long-term change in the moment of inertia of the system, and the system is neither 

irreversibly dispersing or contracting, that is to say in a system in which the average 

value of I&&  over a long period of time is zero (I’ll define “long” soon), the virial theorem 

for a stable, bound system of r
−n

 particles takes the form 

 

    ,0)1(2 =−+ UnT     3.13.15 

 

and for a stable system of gravitationally-interacting particles, 

 

,02 =+ UT      3.13.16 

 

Here the angular brackets are understood to mean the average values of the kinetic and 

potential energies over a long period of time.  By a “long” period we mean, for example, 

long compared with the time that a particle takes to cross from one side of the system to 

the other, or long compared with the time that a particle takes to move in an orbit around 

the centre of mass of the system.  (In the absence of external forces, of course, the centre 

of mass does not move, or it moves with a constant velocity.) 

 

For example, if a bound cluster of stars occupies a spherical volume of uniform density, 

the potential energy is 
a

GM

5

3 2

−   (see equation 5.9.1 of Celestial Mechanics), so the virial 

theorem (equation 3.13.16) will enable you to work out the mean kinetic energy and 

hence speed of the stars.   A globular cluster has roughly spherical symmetry, but it is not 

of uniform density, being centrally condensed.  If you assume some functional form for 

the density distribution, this will give a slightly different formula for the potential energy, 

and you can then still use the virial theorem to calculate the mean kinetic energy. 
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A trivial example is to consider a planet of mass m moving in a circular orbit of radius a 

around a Sun of mass M, such that m<<M and the Sun does not move.  The potential 

energy of the system is U = −GMm/a.  The speed of the planet is given by equating 
a

m
2
v

 

to 
2

a

GMm
, from which T = GMm/(2a), so we easily see in this case that 2T + U = 0. 

 


