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  CHAPTER 17 

VIBRATING SYSTEMS 

 

17.1   Introduction 

 

A mass m is attached to an elastic spring of force constant k, the other end of which is 

attached to a fixed point.  The spring is supposed to obey Hooke’s law, namely that, 

when it is extended (or compressed) by a distance x from its natural length, the tension 

(or thrust) in the spring is kx, and the equation of motion is .kxxm −=&&   This is simple 

harmonic motion of period 2π/ω, where ω2
 = k/m.  Most readers will have no difficulty 

with that problem.  But now suppose that, instead of one end of the spring being attached 

to a fixed point, we have two masses, m1 and m2, one at either end of the spring.  A 

diatomic molecule is much the same thing.  Can you calculate the period of simple 

harmonic oscillations?  It looks like an easy problem, but it somehow seems difficult to 

get a hand on it by conventional newtonian methods.  In fact it can be done quite readily 

by newtonian methods, but this problem, as well as more complicated problems where 

you have several masses connected by several springs and several possible modes of 

vibration, is particularly suitable by lagrangian methods, and this chapter will give 

several examples of vibrating systems tackled by lagrangian methods. 

 

 

17.2  The Diatomic Molecule 

 

Two particles, of masses m1 and m2 are connected by an elastic spring of force constant k.  

What is the period of oscillation? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s suppose that the equilibrium separation of the masses – i.e. the natural, unstretched, 

uncompressed length of the spring – is a.  At some time suppose that the x-coordinates of 

the two masses are x1 and x2.  The extension q of the spring from its natural length at that 
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moment is .12 axxq −−=   We’ll also suppose that the velocities of the two masses at 

that instant are 1x&   and  .2x&   We know from chapter 13 how to start any calculation in 

lagrangian mechanics.  We don’t have to think about it.  We always start with T = ...  and 

V  =  ...: 

 

    ,2

222
12

112
1 xmxmT && +=     17.2.1 

 

    .2

2
1 kqV =       17.2.2 

 

We want to be able to express the equations in terms of the internal coordinate q.  V is 

already expressed in terms of q.  Now we need to express T (and therefore 1x&   and  2x& ) 

in terms of q.  Since ,12 axxq −−=  we have, by differentiation with respect to time, 

 

    .12 xxq &&& −=       17.2.3 

 

We need one more equation.  The linear momentum is constant and there is no loss in 

generality in choosing a coordinate system such that the linear momentum is zero: 

 

    .0 2211 xmxm && +=      17.2.4 

 

From these two equations, we find that 
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Now apply Lagrange’s equation 
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to the single coordinate q in the fashion to which we became accustomed in Chapter 13, 

and the equation of motion becomes 
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     ,kqqm −=&&      17.2.8 

 

which is simple harmonic motion of period ,/2 kmπ  where m is given by equation 

17.2.7.  The frequency is the reciprocal of this, and the “angular frequency” ω, also 

sometimes called the “pulsatance”, is 2π times the frequency, or ./ mk  

 

The quantity )/( 2121 mmmm + is usually called the “reduced mass” and one may wonder is what sense it 

is “reduced”.  I believe the origin of this term may come from an elementary treatment of the Bohr atom of 

hydrogen, in which one at first assumes that there is an electron moving around an immovable nucleus – 

i.e. a nucleus of “infinite mass”.   One develops formulas for various properties of the atom, such as, for 

example, the Rydberg constant, which is the energy required to ionize the atom from its ground state.  This 

and similar formulas include the mass m of the electron.  Later, in a more sophisticated model, one takes 

account of the finite mass of the nucleus, with nucleus and electron moving around their mutual centre of 

mass.  One arrives at the same formula, except that m is replaced by mM/(m + M), where M is the mass of 

the nucleus.  This is slightly less (by about 0.05%) than the mass of the electron, and the idea is that you 

can do the calculation with a fixed nucleus provided that you use this “reduced mass of the electron” rather 

than its true mass.  Whether this is the appropriate term to use in our present context is debatable, but in 

practice it is the term almost universally used. 

 

It may also be remarked upon by readers with some familiarity with quantum mechanics that I have named 

this section “The Diatomic Molecule” – yet I have ignored the quantum mechanical aspects of molecular 

vibration.  This is true – in this series of notes on Classical Mechanics I have adopted an entirely classical 

treatment.  It would be wrong, however, to assume that classical mechanics does not apply to a molecule, 

or that quantum mechanics would not apply to a system consisting of a cricket ball and a baseball 

connected by a metal spring.  In fact both classical mechanics and quantum mechanics apply to both.  The 

formula derived for the frequency of vibration in terms of the reduced mass and the force constant (“bond 

strength”) applies as accurately for the molecule as for the cricket ball and baseball.  Quantum mechanics, 

however, predicts that the total energy (the eigenvalue of the hamiltonian operator) can take only certain 

discrete values, and also that the lowest possible value is not zero.  It predicts this not only for the 

molecule, but also for the cricket ball and baseball – although in the latter case the energy levels are so 

closely spaced together as to form a quasi continuum, and the zero point vibrational energy is so close to 

zero as to be unmeasurable.  Quantum mechanics makes its effects evident at the molecular level, but this 

does not mean that it does not apply at macroscopic levels.  One might also take note that one is not likely 

to understand why wave mechanics predicts only discrete energy levels unless one has had a good 

background in the classical mechanics of waves.  In other words, one must not assume that classical 

mechanics does not apply to microscopic systems, or that quantum mechanics does not apply to 

macroscopic systems. 

 

Below leaving this section, in case you tried solving this problem by newtonian methods 

and ran into difficulties, here’s a hint.  Keep the centre of mass fixed.  When the length of 

the spring is x, the lengths of the portions on either side of the centre of mass are 
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++
  The force constants of the two portions of the spring are 

inversely proportional to their lengths.  Take it from there. 

 

 

17.3   Two Masses, Two Springs and a Brick Wall 

 

The system is illustrated in figure XVII.2, first in its equilibrium (unstretched) position, 

and then at some instant when it is not in equilibrium and the springs are stretched.  You 
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can imagine that the masses are resting upon and can slide upon a smooth, horizontal 

table. I could also have them hanging under gravity, but this would introduce a distracting 

complication without illustrating any further principles.  I also want to assume that all the 

motion is linear, so we could have them sliding on a smooth horizontal rail, or have them 

confined in the inside of a smooth, fixed drinking-straw.  For the present, I don’t want the 

system to bend.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The displacements from the equilibrium positions are x1 and x2, so that the two springs 

are stretched by x1 and  x2 − x1 respectively.  The velocities of the two masses are 1x&  and 

.2x&   We now start the lagrangian calculation in the usual manner: 

 

    ,2
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1 xmxmT && +=     17.3.1 

 

    .)( 2

1222
12

112
1 xxkxkV −+=    17.3.2 

 

Apply Lagrange’s equation to each coordinate in turn, to obtain the following equations 

of motion: 

 

   2212111 )( xkxkkxm ++−=&&     17.3.3 

 

and   .221222 xkxkxm −=&&      17.3.4 

 

Now we seek solutions in which the system is vibrating in simple harmonic motion at 

angular frequency ω; that is, we seek solutions of the form .and 2

2

21

2

1 xxxx ω−=ω−= &&&&  

When we substitute these in equations 17.3.3 and 4, we obtain 

 

   0)( 221

2

121 =−ω−+ xkxmkk     17.3.5 

 

and       .0)( 2

2

2212 =ω−− xmkxk     17.3.6 
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Either of these gives us the displacement ratio x2/x1 (and hence amplitude ratio).  The first 

gives us 
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and the second gives us .
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These are equal, and, by equating the right hand sides, we obtain the following equation 

for the angular frequencies of the normal modes: 

 

  .0)( 21

2

221221

4

21 =+ω++−ω kkkmkmkmmm    17.3.9 

 

This equation can also be derived by noting, from the theory of equations, that equations 

17.3.5 and 6 are consistent only if the determinant of the coefficients is zero. 

 

The meaning of these equations and of the expression “normal modes” can perhaps be 

best illustrated with a numerical example.  Let us suppose, for example, that k1  =  k2  =  1 

and m1  =  3  and m2  =  2.  In that case equation 17.3.9 is .0176 24 =+ω−ω   This is a 

quartic equation in ω, but it is also a quadratic equation in ω2
, and there are just two 

positive solutions for ω.  These are 4082.06/1 =  (slow, low frequency) and 1 (fast, 

high frequency).  If you put the low frequency ω into either of equations 17.3.7 or 8 (or in 

both, to check for arithmetic or algebraic mistakes) you find a displacement ratio of +1.5; 

but if you put the high frequency ω into either equation, you find a displacement ratio of 

−1.0   The first of these normal modes is a low-frequency slow oscillation in which the 

two masses oscillate in phase, with m2 having an amplitude 50% larger than m1.  The 

second normal mode is a high-frequency fast oscillation in which the two masses 

oscillate out of phase but with equal amplitudes. 

 

So, how does the system actually oscillate?  This depends on the initial conditions.  For 

example, if you displace the first mass by one inch to the right and the second mass by 

1.5 inches to the right (this implies stretching the first spring by 1 inch and the second by 

0.5 inches), and then let go, the system will oscillate in the slow, in-phase mode.  But if 

you start by displacing the first mass by one inch to the right and the second mass by one 

inch to the left (this implies stretching the first spring by 1 inch and compressing the 

second by 2 inches), the system will oscillate in the fast, out-of-phase mode.  For other 

initial conditions, the system will oscillate in a linear combination of the normal modes. 

 

Thus, m1 might oscillate with an amplitude A in the slow mode, and an amplitude B in the 

fast mode: 

   ,)cos()cos( 22111 α+ω+α+ω= tBtAx    17.3.10 

 

in which case the oscillation of m2 is given by 
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   .)cos()cos(5.1 22112 α+ω−α+ω= tBtAx   17.3.11 

 

In our example, ω1 and ω2 are 6/1 and 1 respectively. 

 

Let’s suppose that the initial conditions are that, at t = 0,  21 and xx && are both zero.  This 

means that α1 and α2 are both zero or π (I’ll take them to be zero), so that 

 

   tBtAx 211 coscos ω+ω=      17.3.12 

 

and   .coscos5.1 212 tBtAx ω−ω=     17.3.13 

 

Suppose further that at t = 0,  x1and x2 are both +1, which means that we start by 

stretching both springs equally.  Equations 17.3.12 and 13 then become 1  =  A  +  B and  

1  =  1.5A  −  B.  That is,  A = 0.8 and B = 0.2.  I’ll leave you to draw graphs of x1 and x2 

versus time. 

 

Here’s an exercise that might be useful if, perhaps, you wanted to construct a real system 

with two equal masses m and two equal springs, each of constant k, to demonstrate the 

vibrations.   Show that in that case, the angular frequency (which is, of course, 2π times 

the actual frequency) of the slow, in phase, mode is  

 

m

k

m

k
6180.0)15(
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1 =−=ω   

with a displacement ratio 6180.1)15(/
2
1

12 =+=xx ; 

 

and the angular frequency of the fast, out of phase, mode is 

 

m

k

m

k
6180.1)15(

2
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2 =+=ω  

with a displacement ratio, .6180.0)15(/
2
1

12 −=−−=xx  

 

Knowing these displacements ratios will enable you to start with the appropriate initial 

conditions for each normal mode. 

 

If you were to start at t = 0 with a displacements x1 =  1 and x2 = 2  which isn’t right for 

either normal mode,  you can show that the subsequent displacements would be  

 

.cos572105.0cos427894.1

cos820170.0cos820170.1
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That looks like this: 
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Although at first it looks like fast in-phase mode for both of them, you can see the 

influence of the slow mode, which has about 2.6 times the period of the last mode, in the 

slow amplitude modulation.  If you look carefully at the modulation amplitudes of both 

displacements, you will see that the amplitude of the x1 displacement is out of phase with 

the amplitude of the x2 displacement. 

 

 

17.4   Double Torsion Pendulum 
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Here we have two cylinders of rotational inertias I1 and I2 hanging from two wires of 

torsion constants c1 and c2.  At any instant, the top cylinder is turned through an angle θ1 

from the equilibrium position and the lower cylinder by an angle θ2 from the equilibrium 

position (so that, relative to the upper cylinder, it is turned by )( 12 θ−θ ).  The equations 

and the description of the motion are just the same as in the previous example, except that 

x1, x2, m1, m2, k1, k2 are replaced by θ1, θ2, I1, I2, c1, c2.  The kinetic and potential energies 

are   

 

    ,2

222
12

112
1 θ+θ= && IIT     17.4.1 

    .)( 2

1222
12

112
1 θ−θ+θ= ccV    17.4.2  

 

The equations for ω and the displacement  ratios are just the same, and there is an in-

phase and an out-of-phase mode. 

 

 

17.5   Double Pendulum 

 

This is another similar problem, though, instead of assuming Hooke’s law, we shall 

assume that angles are small (sin θ ≈  θ , cos θ ≈  2

2
11 θ− ).  For clarity of drawing, 

however, I have drawn large angles in figure XVIII.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Because I am going to use the lagrangian equations of motion, I have not marked in the 

forces and accelerations; rather, I have marked in the velocities.  I hope that the two 

components of the velocity of m2 that I have marked are self-explanatory; the speed of m2 
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is given by .)cos(2 122121

2

2

2

2

2

1

2

1

2

2 θ−θθθ+θ+θ= &&&& llllv   The kinetic and potential energies 

are 

 

  ,])cos(2[ 122121

2

2

2

2

2

1

2

122
12

1

2

112
1 θ−θθθ+θ+θ+θ= &&&&& llllmlmT  17.5.1 

 

  .)coscos(cosconstant 22112111 θ+θ−θ−= llgmglmV   17.5.2 

 

If we now make the small angle approximation, these become 

 

  2

221122
12

1

2

112
1 )( θ+θ+θ= &&& llmlmT      17.5.3 

 

and .)(constant 221211

2

22

2

1122
12

1112
1 glmglmglmllgmglmV −−−θ+θ+θ+=  17.5.4 

 

Apply the lagrangian equation in turn to θ1 and θ2: 

 

  112122121

2

121 )()( θ+−=θ+θ+ glmmllmlmm &&&&    17.5.5 

 

and   .2222

2

221212 θ−=θ+θ glmlmllm &&&&     17.5.6  

 

Seek solutions of the form 2

2

21

2

1 and θω−=θθω−=θ &&&& .     

 

Then  0))(( 2

2

221

2

221 =θω+θ−ω+ lmglmm     17.5.7 

 

and   .0)( 2

2

21

2

1 =θ−ω+θω gll      17.5.8 

 

Either of these gives the displacement ratio θ2/θ1.  Equating the two expressions for the 

ratio θ2/θ1, or putting the determinant of the coefficients to zero, gives the following 

equation for the frequencies of the normal modes: 

 

  .0)()()( 2

21

2

2121

4

211 =++ω++−ω gmmllgmmllm   17.5.9 

 

As in the previous examples, there is a slow in-phase mode, and fast out-of-phase mode. 

 

For example, suppose  m1 = 0.01 kg,  m2 = 0.02 kg,  l1  =  0.3 m,  l2  =  0.6 m,  g = 9.8 m 

s
−2

. 

 

Then .08812.22646.00018.0 24 =+ω−ω   The slow solution is ω  =  3.441 rad s
−1

  (P  

=  1.826 s), and the fast solution is ω  =  11.626 rad s
−1

  (P  =0.540 s).  If we put the first 

of these (the slow solution) in either of equations 17.5.7 or 8 (or both, as a check against 

mistakes) we obtain the displacement ratio θ2/θ1  =   1.319, which is an in-phase mode.  If 

we put the second (the fast solution) in either equation, we obtain θ2/θ1  =   −0.5689 , 

which is an out-of-phase mode.  If you were to start with θ2/θ1  =   1.319 and let go, the 
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pendulum would swing in the slow in-phase mode.  .  If you were to start with θ2/θ1  =   

−0.5689 and let go, the pendulum would swing in the fast out-of-phase mode.  Otherwise 

the motion would be a linear combination of the normal modes, with the fraction of each 

determined by the initial conditions, as in the example in section 17.3. 

 

 

 

 

17.6    Linear Triatomic Molecule 

 

In Chapter 2, Section 2.9, we discussed a rigid triatomic molecule.  Now we are going to 

discuss three masses held together by springs, of force constants k1 and k2.  We are going 

to allow it to vibrate, but not to rotate.  Also, for the time being, I don’t want the 

molecule to bend, so we’ll put it inside a drinking straw to that all the vibrations are 

linear.  By the way, for real triatomic molecules, the force constants and rotational 

inertias are such that molecules vibrate much faster than they rotate.  To see their 

vibrations you look in the near infra-red spectrum; to see their rotation, you have to go to 

the far infrared or the microwave spectrum. 

 

 

  

 

 

 

 

 

 

Suppose that the equilibrium separations of the atoms are a1 and a2.  Suppose that at 

some instant of time, the x-coordinates (distances from the left hand edge of the page) of 

the three atoms are x1, x2 , x3.  The extensions from the equilibrium distances are then  

., 22321121 axxqaxxq −−=−−=   We are now ready to start: 

 

   ,2

332
12

222
12

112
1 xmxmxmT &&& ++=     17.6.1 

 

    .2

222
12

112
1 qkqkV +=      17.6.2 

 

We need to express the kinetic energy in terms of the internal coordinates, and, just as for 

the diatomic molecule (Section 17.2), the relevant equations are 

 

    ,121 xxq &&& −=       17.6.3 

  

    232 xxq &&& −=       17.6.4 

 

and    .0 332211 xmxmxm &&& ++=     17.6.5 

m1 m2 m3 

k1 k2 

FIGURE XVII.5 
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These can conveniently be written 
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    17.6.6 

 

By one dexterous flick of the fingers (!) we invert the matrix to obtain 
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  17.6.7 

 

where .321 mmmM ++=   On putting these into equation 17.6.1, we now have 

 

  )2( 2

221

2

12
1 qbqqhqaT &&&& ++=     17.6.8 

 

and   ,2

222
12

112
1 qkqkV +=       17.6.2 

 

where   ,/)( 321 Mmmma +=       17.6.9 

  ,/13 Mmmh =       17.6.10 

  Mmmmb /)( 213 +=       17.6.11 

and, for future reference, 

   ./ 2221

2 hmMmmmhab ==−      17.6.12 

 

On application of Lagrange’s equation in turn to the two internal coordinates we obtain 

 

   01121 =++ qkqhqa &&&&      17.6.13 

 

and   .02212 =++ qkqhqb &&&&      17.6.14 

 

Seek solutions of the form 1

2

1 qq ω−=&& and 2

2

2 qq ω−=&&  and we obtain the following two 

expressions for the extension ratios: 
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Equating them gives the equation for the normal mode frequencies: 

 

     .0)()( 21

2

12

42 =+ω+−ω− kkbkakhab     17.6.16 

 

For example, if ,and 32121 mmmmkkk =====  we obtain, for the slow symmetric 

(“breathing”) mode, 1/ 21 +=qq   and ./2 mk=ω   For the fast asymmetric mode, 

1/ 21 −=qq  and ./32 mk=ω  

 

Example.   

 

Consider the linear OCS molecule whose atoms have masses 16, 12 and 32.  Suppose that 

the angular frequencies of the normal modes, as determined from infrared spectroscopy, 

are 0.905 and 0.413.  (I just made these numbers up, in unstated units, just for the purpose 

of illustrating the calculation.  Without searching the literature, I can’t say what they are 

in the real OCS molecule.)  Determine the force constants. 

 

In Chapter 2 we considered a rigid triatomic molecule.  We were given the moment of 

inertia, and we were asked to find the two internuclear distances.  We couldn’t do this 

with just one moment of inertia, so we made an isotopic substitution (
18

O instead of 
16

O) 

to get a second equation, and so we could then solve for the two internuclear distances.  

This time, we are dealing with vibration, and we are going to use equation 17.6.16 to find 

the two force constants.  This time, however, we are given two frequencies (of the normal 

modes), and so we have no need to make an isotopic substitution  −  we already have two 

equations. 

 

Here are the necessary data. 

 
16

OCS 

 

Fast ω      0.905 

Slow ω      0.413       
m1   m2    m3      16   12   32 

M      60 

a     37.11 &  

h                         35.8 &  

b     39.14 &  

ab − h
2
       102.4 

 

Use equation 17.6.16 for each of the frequencies, and you’ll get two equations, in k1 and 

k2.   As in the rotational case, they are quadratic equations, but they are a bit easier to 

solve than in the rotational case.  You’ll get two equations, each of the form 

,02121 =+−− kkCkBkA  where the coefficients are functions of a, b, h, ω.  You’ll 

have to work out the values of these coefficients, but, before you substitute the numbers 
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in, you might want to give a bit of thought to how you would go about solving two 

simultaneous equations of the form .02121 =+−− kkCkBkA  

 

 

You will find that there are two possible solutions: 

 

 

   k1 = 2.8715    k2  =  4.9818 

 

and                k1 = 3.9143    k2  =  3.6547 

 

 

Both of these will result in the same frequencies.  You would need some additional 

information to determine which obtains for the actual molecule, perhaps with 

measurements on an isotopomer, such as 
18

OCS. 

 

Note that in this section we considered a linear triatomic molecule that was not allowed 

either to rotate or to bend, whereas in Chapter 2 we considered a rigid triatomic molecule 

that was not allowed either to vibrate or to bend.  If all of these restrictions are removed, 

the situation becomes rather more complicated.  If a rotating molecule vibrates, the 

moving atoms, in a co-rotating reference frame, are subject to the Coriolis force, and 

hence they do not move in a straight line.  Further, as it vibrates, the rotational inertia 

changes periodically, so the rotation is not uniform.  If we allow the molecule to bend, 

the middle atom can oscillate up and down in the plane of the paper (so to speak) or back 

and forth at right angles to the plane of the paper.  These two motions will not necessarily 

have either the same amplitude or the same phase.  Consequently the middle atom will 

whirl around in a Lissajous ellipse, giving rise to what has been called “vibrational 

angular momentum”.  In a real triatomic molecule, the vibrations are usually much faster 

than the relatively slow, ponderous rotation, so that vibration-rotation interaction is small 

– but is by no means negligible and is readily observed in the spectrum of the molecule. 

 

 

 

17.7 Two Masses, Three Springs, Two Brick Walls 

 

The three masses are equal, and the two outer springs are identical.  Figure XVII.6 shows 

the equilibrium position. 

 

 

 

 

 

 

 

 

k1 k2 
m m k1 

FIGURE XVII.6 
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Suppose that at some instant the first mass is displaced a distance x to the right and the 

second mass is displaced a distance y to the right.  The extensions of the first two springs 

are x and y − x respectively, and the compression of the third spring is y.  If the speeds of 

the masses are x& and y& , we have for the kinetic and potential energies: 

 

    2

2
12

2
1 ymxmT && +=      17.7.1 

 

and    .)( 2

12
12

22
12

12
1 ykxykxkV +−+=    17.7.2 

 

Apply Lagrange’s equation in turn to x and to y. 

 

    0)( 221 =−++ ykxkkxm &&     17.7.3 

 

and    .0)( 221 =−++ xkykkym &&    17.7.4 

 

Seek solutions of the form .and 22 yyxx ω−=ω−= &&&&  

 

   0)( 221

2 =−++ω− ykxkkm     17.7.5 

 

and   .0)( 21

2

2 =++ω−+− ykkmxk     17.7.6 

 

On putting the determinant of the coefficients to zero, we find for the frequencies of the 

normal modes 

 

   ,2
and 21212

m

kk

m

k +
=ω=ω           17.7.7a,b 

 

corresponding to displacement ratios 

 

   1=
y

x
    and  .1−=

y

x
          17.7.8a,b  

 

In the first, slow, mode, the masses move in phase and there is no extension or 

compression of the connecting spring.  In the second, fast, mode, the masses move in 

antiphase and the compression or extension of the coupling spring is twice the extension 

or compression of the outer springs.   

 

The general motion is a linear combination of the normal modes: 

 

  ,)cos()cos( 2211 α+ω+α+ω= tBtAx    17.7.9 

   

  ,)cos()cos( 2211 α+ω−α+ω= tBtAy    17.7.10 

 



 15 

  ,)sin()sin( 222111 α+ωω−α+ωω−= tBtAx&    17.7.11 

 

  .)sin()sin( 222111 α+ωω+α+ωω−= tBtAy&    17.7.12 

 

Suppose that the initial condition is at t = 0,  .0,,0 0 ==== xxxyy && That is, we pull 

the first mass a little to the right (keeping the second mass fixed) and then we let go.  The 

second two equations establish that α1 = α2  =  0, and the first two equations tell us that A  

=  B   =  x0/2.  The displacements are then given by 

 

 ttxttxx )(cos)(cos)cos(cos 212
1

212
1

02102
1 ω+ωω−ω=ω+ω=  17.7.13 

 

and .)(sin)(sin)cos(cos 212
1

212
1

02102
1 ttxttxy ω+ωω−ω−=ω−ω=  17.7.14 

 

Let us imagine, for example, that k2 is much less than k1 (but not negligible), so that we 

have two weakly-coupled oscillators.  In that case equations17.7.7 tell us that the 

frequencies of the two normal modes are nearly equal.  What equation 17.7.13 describes, 

then, is a rapid oscillation of the first mass with angular frequency )( 212
1 ω+ω whose 

amplitude is modulated with a slow angular frequency .)( 212
1 ω−ω   Equation 17.7.14 

describes the same sort of motion for the second mass, except that the modulation is out 

of phase by 90
o
 with the modulation of the motion of the first mass.  For a while the first 

mass will oscillate with a large amplitude.  This will gradually decrease, while the 

amplitude of the motion of the second mass increases until the motion of the first mass 

momentarily ceases.  After that, the amplitude of the motion of the second mass starts to 

decrease, while the first mass starts up again.  And so the motion continues, with the first 

mass and the second mass alternately taking up the motion. 

 

  

17.8     Transverse Oscillations of Masses on a Taut String 

 

  

 

 

 

 

 

 

 

A light string of length 4a is held taut, under tension F between two fixed points.  Three 

equal masses m are attached at equidistant points along the string.  They are set into 

transverse oscillation of small amplitudes, the transverse displacements of the three 

masses at some time being y1, y2 and y3.   

 

The kinetic energy is easy.  It is just 

 

FIGURE XVII.7 
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    .)( 2

3

2

2

2

12
1 yyymT &&& ++=     17.8.1 

 

The potential energy is slightly more difficult. 

 

In the undisplaced position, the length of each portion of the string is a. 

 

In the displaced position, the lengths of the four portions of the string are, respectively, 

 

22

3

22

32

22

12

22

1 )()( ayayyayyay ++−+−+  

 

For small displacements (i.e. the ys much smaller than a), these are, approximately (by 

binomial expansion), 

 

a

y
a

a

yy
a

a

yy
a

a

y
a

22

)(

2

)(

2

2

1

2

32

2

12

2

1 +
−

+
−

++  

 

so the extensions are 

 

a

y

a

yy

a

yy

a

y

22

)(

2

)(

2

2
3

2
32

2
12

2
1 −−

 

 

It is also supposed that the tension in the string is F and that the displacements are 

sufficiently small that this is constant.  The work done in displacing the masses, which is 

the elastic energy stored in the string as a result of the displacements, is therefore 

 

[ ] ).()()(
2

3221

2

3

2

2

2

1

2

3

2

32

2

12

2

1 yyyyyyy
a

F
yyyyyy

a

F
V −−++=+−+−+=   

 

We note with mild irritation the presence of the cross-terms ., 3221 yyyy  

 

Apply Lagrange’s equation in turn to the three coordinates: 

 

   ,0)2( 211 =−+ yyFyam &&     17.8.3 

 

   ,0)2( 3212 =−+−+ yyyFyam &&     17.8.4 

 

   .0)2( 323 =+−+ yyFyam &&     17.8.5 

 

Seek solutions of the form .,, 3

2

32

2

21

2

1 yyyyyy ω−=ω−=ω−= &&&&&&  

 

Then   ,0)2( 21

2 =−ω− FyyamF     17.8.6 

  ,0)2( 32

2

1 =−ω−+− FyyamFFy    17.8.7 
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   .0)2( 3

2

2 =ω−+− yamFFy    17.8.8 

 

Putting the determinant of the coefficients to zero gives an equation for the frequencies of 

the normal modes.  The solutions are: 

            Slow   Medium       Fast 

 
am

F)22(2

1

−
=ω           

am

F22

2 =ω                 
am

F)22(2

3

+
=ω  

 

Substitution of these into equations 17.8.6 to 8 gives the following displacement ratios 

for these three modes: 

 

y1 : y2 : y3  =    1 : √2  : 1          1  :  0  :  −1  1 : −√2  : 1 

 

These are illustrated in figure XVII.8. 

   

As usual, the general motion is a linear combination of the normal modes, the relative 

amplitudes and phases of the modes depending upon the initial conditions. 

  

If the motion of the first mass is a combination of the three modes with relative 

amplitudes in the proportion ,ˆ:ˆ:ˆ
321 qqq  and with initial phases ,,, 321 ααα  its motion is 

described by 

  .)sin(ˆ)sin(ˆ)sin(ˆ
3332221111 α+ω+α+ω+α+ω= tqtqtqy   17.8.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

The motions of the second and third masses are then described by 
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• • 

ω1 
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• 

1.85ω1 
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  )sin(ˆ2)sin(ˆ2 3331112 α+ω−α+ω= tqtqy    17.8.10 

 

and  .)sin(ˆ)sin(ˆ)sin(ˆ
3332221113 α+ω+α+ω−α+ω= tqtqtqy   17.8.11 

 

These can be written 

 

    ,3211 qqqy ++=      17.8.12 

 

    312 22 qqy −=     17.8.13 

 

and    ,3211 qqqy +−=      17.8.14 

 

where the qi , like the yi , are time-dependent coordinates. 

 

We could, if we wish, express the qi in terms of the yi, by solving these equations: 

 

    ,)2( 3214
1

1 yyyq ++=     17.8.15 

 

    )( 312
1

2 yyq −=      17.8.16 

 

and    .)2( 3214
1

3 yyyq +−=     17.8.17 

 

We have hitherto described the state of the system as a function of time by giving the 

values of the coordinates y1 , y2 and y3.  We could equally well, if we wished, describe the 

state of the system by giving, instead, the values of the coordinates q1 , q2 and q3.  Indeed 

it turns out that it is very useful to do so, and these coordinates are called the normal 

coordinates, and we shall see that they have some special properties.  Thus, if you 

express the kinetic and potential energies in terms of the normal coordinates, you get 

 

    )424( 2

3

2

2

2

12
1 qqqmT &&& ++=    17.8.18 

 

and   ( ) ( )[ ].2222
2 2

3

2

2

2

1 qqq
a

F
V +++−=    17.8.19 

 

Note that there are no cross terms.  When you apply Lagrange’s equation in turn to the 

three normal coordinates, you obtain 

 

    ( ) ,22 11 Fqqam −−=&&     17.8.20 

 

    22 2Fqqam −=&&      17.8.21 
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and    ( ) .22 33 Fqqam +−=&&     17.8.22 

 

Notice that the normal coordinates have become completely separated into three 

independent equations and that each is of the form qq 2ω−=&& and that each of the normal 

coordinates oscillates with one of the frequencies of the normal modes.  Much of the art 

of solving problems involving vibrating systems concerns identifying the normal 

coordinates. 

 

 

17.9   Vibrating String 

 

It is possible that the three modes of vibration of the three masses in section 17.8 

reminded you of the fundamental and first two harmonic vibrations of a stretched string – 

and it is quite proper that it did.  If you were to imagine ten masses attached to a stretched 

string and to carry out the same sort of analysis, you would find ten normal modes, of 

which one would be quite like the fundamental mode of a stretched string, and the 

remainder would remind you of the first nine harmonics.  You could continue with the 

same analysis but with a very large number of masses, and eventually you would be 

analysing the vibrations of a continuous heavy string.  We do that now, and we assume 

that we have a heavy, taut string of mass µ per unit length, and under a tension F.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I show in figure XVII.9 a portion of length δx of a vibrating rope, represented by A0B0 in 

its equilibrium position and by AB in a displaced position.  The rope makes an angle ψA 

FIGURE XVII.9 
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with the horizontal at A and an angle ψB with the horizontal at B.  The tension in the rope 

is F.  The vertical equation of motion is  

 

   .)sin(sin
2

2

t

y
xF AB

∂

∂
δµ=ψ−ψ     17.9.1 

 

If the angles are small, then ,sin
x

y

∂

∂
≅ψ  so the expression in parenthesis is .

2

2

x
x

y
δ

∂

∂
  The 

equation of motion is therefore 

 

   .where,
2

2

2

2
2

µ
=

∂

∂
=

∂

∂ T
c

t

y

x

y
c            17.9.2,a,b 

 

As can be verified by substitution, the general solution to this is of the form 

 

   .)()( ctxgctxfy ++−=     17.9.3  

 

This represents a function that can travel in either direction along the rope at a speed c 

given by equation 17.9.2b.  Should the disturbance be a periodic disturbance, then a wave 

will travel along the rope at that speed.  Further analysis of waves in ropes and strings is 

generally done in chapters concerned with wave motion.  This section, however, at least 

establishes the speed at which a disturbance (periodic or otherwise) travels along a 

stretched strong or rope. 

 

 

 
17.10   Water 

 

Water consists of a mass M (“oxygen”) connected to two smaller equal masses m 

(“hydrogen”) by two equal springs of force constants k, the angle between the springs 

being 2θ. The equilibrium length of each spring is r.  The torque needed to increase the 

angle between the springs by 2δθ is 2cδθ.  See figure XVII.10.  (θ is about 52°.) 

 

 

 

 

 

 

 

 

                          
 

 

At any time, let the coordinates of the three masses (from left to right) be  

m 

M 

go

m 

FIGURE XVII.10 
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 ),(,),(,),( 332211 yxyxyx  

 

and let the equilibrium positions be 

 

 ,),(,),(,),( 303020201010 yxyxyx    where y30  =  y10 . 

 

We suppose that these coordinates are referred to a frame in which the centre of mass of 

the system is stationary. 

 

Let us try and imagine, in figure XVII.11, the vibrational modes.  We can easily imagine 

a mode in which the angle opens and closes symmetrically.  Let is resolve this mode into 

an x-component and a y-component.   In the x-component of this motion, one hydrogen 

atom moves to the right by a distance q1 while the other moves to the left by and equal 

distance q1.  In the y-component of this symmetric motion, both hydrogens move 

upwards by a distance q2, while, in order to keep the centre of mass of the system 

unmoved, the oxygen necessarily moves down by a distance 2mq2/M.  We can also 

imagine an asymmetric mode in which one spring expands while the other contracts.  

One hydrogen moves down to the left by a distance q3, while the other moves up to the 

left by the same distance.  In the meantime, the oxygen must move to the right by a 

distance (2mq3 sin θ)/M, in order to keep the centre of mass unmoved.   

 

We are going to try to write down the kinetic and potential energies in terms of the 

internal coordinates q1, q2 and q3. 
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It is easy to write down the kinetic energy in terms of the (x , y) coordinates: 

 

  .)()()( 2

3

2

32
12

2

2

22
12

1

2

12
1 yxmyxMyxmT &&&&&& +++++=   17.10.1 
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From geometry, we have: 

 

  θ−=θ−= cossin 321311 qqyqqx &&&&&&           17.10.2a,b 

 

  
M

qm
y

M

qm
x 2

2
3

2

2sin2 &
&

&
& −=

θ
=           17.10.3a,b 

   

  θ+=θ−−= cossin 323313 qqyqqx &&&&&&          17.10.4a,b 

 

On putting these into equation 17.10.1 we obtain 

 

 ( ) ./)sin2(1)/21( 2

3

22

2

2

1 qMmmqMmmqmT &&& θ++++=              17.10.5 

 

For short, I am going to write this as 

 

  .2

333

2

222

2

111 qaqaqaT &&& ++=       17.10.6 

 

 

Now for the potential energy.  

 

The extension of the left hand spring is 

 

 

( )./)cossin2(1cos)/21(sin

cossin2cos2
cossin

321

3
3

2
211

MmqMmqq

M

mq
q

M

mq
qqr

θθ++θ+−θ−=

θθ
++

θ
−θ−θ−=δ

 17.10.7 

 

The extension of the right hand spring is 

  

( )./)sin2(1cos)/21(sin

sin2cos2
cossin

2

321

2

3
3

2
212

MmqMmqq

M

mq
q

M

mq
qqr

θ+−θ+−θ−=

θ
−−

θ
−θ−θ−=δ

 17.10.8 

 

The increase in the angle between the springs is 

 

 .
sin)/21(2cos2

2 21

r

qMm

r

q θ+
+

θ
−=δθ     17.10.9 

 

The potential energy (above the equilibrium position) is  

 

  .)2()()( 2

2
12

22
12

12
1 δθ+δ+δ= crkrkV              17.10.10 

 

On substituting equations 17.10,7,8 and 9 into this, we obtain an equation of the form 
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  ,2 2

333

2

2222112

2

111 qbqbqqbqbV +++=              17.10.11 

 

where I leave it to the reader, if s/he wishes, to work out the detailed expressions for the 

coefficients.  We still have a cross term, so we can’t completely separate the coordinates, 

but we can easily apply Lagrange’s equation to equations 17.10.6 and 11, and then seek 

simple harmonic solutions in the usual way.  Setting the determinant of the coefficients to 

zero leads to the following equation for the angular frequencies of the normal modes: 

 

   .0

00

0

0

33
2

33

22
2

2212

1211
2

11

=

ω−

ω−

ω−

ab

abb

bab

            17.10.12 

 

Thus, given the masses and r, θ, k and c, one can predict the frequencies of the normal 

modes.  Can one calculate k and c given the frequencies?  I don’t know, to tell the truth.  

Can I leave it to the reader to investigate further? 

 

 

 

17.11  A General Vibrating System 

 

For convenience, I'll refer to a collection of masses connected by springs as a "molecule", 

and the individual masses as "atoms".   In a molecule with N atoms, the number of 

degrees of vibrational freedom (the number of normal modes of vibration) n N==== −−−−3 6  

for nonlinear molecules, or n N==== −−−−3 5 for linear molecules.  Three equations are 

needed to express zero translational motion, and three (or two) are needed to express zero 

rotational motion. 

 
[While reading this Section, it might be worthwhile for the reader to follow at the same time the treatment 

given to the OCS molecule in Section 17.6.  Bear in mind, however, that in that section we did not consider 

the possibility of the molecule bending.  Indeed we treated the molecule as if it were constrained inside a 

drinking straw, and it remained linear at all times.  That being the case only N coordinates (rather than 3N) 

suffice to describe the state of the molecule.  Only one equation is needed to express zero translational 

motion, and none are needed to express zero rotational motion.  Thus there are N − 1 internal coordinates, 

and hence N − 1 normal vibrational modes.  In the case of OCS, N = 3, so there are two normal vibrational 

modes.]  

 

A molecule with n degrees of vibrational freedom can be described at some instant of 

time by n internal coordinates qi.  A typical such coordinate may be related to the external 

coordinates of two atoms, for example, by some expression of the form q x x a==== −−−− −−−−2 1 , 

as we saw in our example of the molecule OCS.  Its potential energy can be written in the 

form 
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2 11 1

2

12 1 2 1 1

21 2 1 22 2

2

2 2

1 1 12 2

V q q q q q

q q q q q

q q q q q q

n n

n n

n n n nn n n

==== ++++ ++++ ++++

++++ ++++ ++++ ++++

++++

++++ ++++ ++++ ++++

κ κ κ

κ κ κ

κ κ κ

...

...

...

... .

   17.11.1 

Unless the q are the judiciously chosen "normal coordinates" (see our example of the 

transverse vibrations of three masses on an elastic string), there will in general be cross 

terms, such as q1q2.   If both qs of a term are linear displacements, the corresponding κ is 

a force constant (dimensions MT
−2

).  If both qs are angles, κ is a torsion constant 

(dimensions ML
2
T

−2
.  If one is a linear displacement and he other is an angular 

displacement, κ will be a coefficient of dimensions MLT
−2

. 

. 

The matrix is symmetric, so that equation 17.11.1 could also be written        

 

   

2 2 2

2

11 1

2

12 1 2 1 1

22 2

2

2 2

V q q q q q

q q q

q q

n n

n n

nn n n

==== ++++ ++++ ++++

++++ ++++ ++++

++++

++++

κ κ κ

κ κ

κ

...

...

...

.

  17.11.2 

                      In matrix notation, the equation (i.e. equations 17.11.1 or  17.11.2) could be written: 

 

      qq κκκκ~2 =V .     17.11.3 

 

 or in vector/tensor notation,  2V ==== ••••q qκκκκ .     17.11.4 

 

 

The kinetic energy can be written in terms of the time rates of change of the external 

coordinates xi: 

 

....2 2

33

2

22

2

11 NN xmxmxmT &&& +++=    17.11.5 

 

                     To make use of the Lagrangian equations of motion, we need to express V and T in terms 

                     of the same coordinates, and it is usually advantageous if these be the n internal 

coordinates rather than the 3N external coordinates – so that we have to deal with only n 

rather than 3N lagrangian equations.  (Recall that 5or63 −= Nn .)  The relations 

between the external and internal coordinates are given as a set of equations that express 

a choice of coordinates such that there is no pure translation and no pure rotation of the 

molecule.  These equations are of the form 

 

     .xq A=      17.11.6 
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Here q  is an 1×n  column matrix,  x  a 13 ×N  column matrix, and A is a matrix with n 

rows and 3N columns, and it may need a little trouble to set up.  We could then use this to 

express V in terms of the external coordinates, so we would then have both V and T in 

terms of the external coordinates.  We could then apply Lagrange’s equation to each of 

the 3N external coordinates and arrive at 3N simultaneous differential equations of 

motion. 

 

A better approach is usually to set up the equations connecting q& and x& : 

 

.xq && B=      17.11.7 

 

(These correspond to equations 17.6.3 and 17.6.4 in our example of the linear triatomic 

molecule in Section 17.6.)   We then want to invert equations 17.11.7 in order to express 

x&  in terms of  q& .  But we can’t do this, because B is not a square matrix.  x&  has 3N 

elements while q&  has only n.  We have to add an additional six (or five for linear 

molecules) equations to express zero pure translational and zero pure rotational motion.  

This adds a further 6 or 5 rows to B, so that B is now square (this corresponds to 

equation 17.6.6), and we can then invert equation 17.11.7: 

 

.qx &&
-1B=      17.11.8 

 

(This corresponds to equation 17.6.7.) 

 

By this means we can express the kinetic energy in terms of the time rates of change of 

only the n internal coordinates: 
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21211

22

2

2221221

112112

2

111

nnnnnnn

nn

nn

qqqqqq

qqqqq

qqqqqT

&&&&&&

&&&&&

&&&&&

µ++µ+µ+

+

µ++µ+µ+

µ++µ+µ=

    17.11.7 

 

Since the matrix is symmetric, the equation could also be written in a form analogous to 

equation 17.11.2.  The equation can also be written in matrix notation as 

 

     qq && µµµµ
~

2 =T .     17.11.8 

 

 or in vector/tensor notation,  qq && µµµµ•=T2 .     17.11.9 

 

 Here the µij are functions of the masses.  If both qs in a particular term have the 

dimensions of a length, the corresponding µ and κ will have dimensions of mass and 

force constant.  If both qs are angles, the corresponding µ and κ will have dimensions of 

rotational inertia and torsion constant..  If one q is a length and the other is an angle, the 

corresponding µ  and κ will have dimensions ML and MLT
−2

. 
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 Apply Lagrange's equation successively to q qn1 , ... ,  to obtain n equations of the form 

 

                       .0...... 11111111 =κ++κ+µ++µ nnnn qqqq &&&&    7.11.10 

 

 That is to say 

      qq κκκκµµµµ −=&& .              17.11.11 

  

 Seek simple harmonic solutions of the form qq 2ω−=&&  

 

 and we obtain n  equations of the form 

 

   ( ) ... ( ) .κ µ ω κ µ ω11 11

2

1 1 1

2 0−−−− ++++ ++++ −−−− ====q qn n n             17.11.13 

 

 The frequencies of the normal modes can be obtained by equating the determinant of the 

coefficients to zero, and hence the displacement ratios can be determined. 

 

 If N is large, this could be a formidable task.  The work can be very much reduced by 

making use of symmetry relations of the molecule, in which case the determinant of the 

coefficients may be factored into a number of much smaller subdeterminants.  Further, if 

the configuration of the molecule could be expressed in terms of normal coordinates 

(combinations of the internal coordinates) such that the potential energy contained no 

cross terms, the equations of motion for each normal coordinate would be in the form 

.2qq ω−=&&  

 

 

 17.12    A Driven System 

 

It would probably be useful before reading this and the next section to review Chapters 

11 and 12. 

 

 

 

 

 

 

 

 

 

  

Figure XVII.12 shows the same system as figure XVII.2, except that, instead of being left 

to vibrate on its own, the second mass is subject to a periodic force tFF ω= sinˆ .  For 

the time being, we’ll suppose that there is no damping.  Either way, it is not a 

Equilibrium: 

Displaced: 

m1 m2 k1 k2 

FIGURE XVII.12 
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conservative force, and Lagrange’s equation will be used in the form of equation 13.4.12.  

As in section 17.2, the kinetic energy is 
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222
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112
1 xmxmT && +=     17.12.1 

 

Lagrange’s equations are 
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     17.12.2 

 

and    .2
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P
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T

x

T
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d
=

∂

∂
−

∂

∂

&
     17.12.3 

 

We have to identify the generalized forces P1 and P2. 

 

In the nonequilibrium position, the extension of the left hand spring is x1 and so the 

tension in that spring is .111 xkf =   The extension of the right hand spring is 22 xx − and 

so the tension in that spring is .)( 1222 xxkf −=   If x1 were to increase by δx1, the work 

done on m1 would be ,)( 112 xff δ− and therefore the generalized force associated with the 

coordinate x1 is .)( 111221 xkxxkP −−=    If  x2 were to increase by δx2, the work done on 

m2 would be ,)( 22 xfF δ−  and therefore the generalized force associated with the 

coordinate x2 is ).(sinˆ
1222 xxktFP −−ω=   The lagrangian equations of motion 

therefore become 

 

   0)( 2212111 =−++ xkxkkxm &&     17.12.4 

 

and   .sinˆ)( 12222 tFxxkxm ω=−+&&     17.12.5 

 

Seek solutions of the form .and 2

2

21

2

1 xxxx ω−=ω−= &&&&   The equations become 

 

   0)( 221

2

121 =−ω−+ xkxmkk     17.12.6 

 

and   .sinˆ)( 2

2

2212 tFxmkxk ω=ω−+−    17.12.7 

 

We do not, of course, now equate the determinants of the coefficients to zero (why not?!), 

but we can solve these equations to obtain 
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and   .
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The amplitudes of these motions (and how they vary with the forcing frequency ω) are 
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where I have re-written the denominators in the form of a quadratic expression in ω2
. 

 

For illustration I draw, in figure XVII.13, the amplitudes of the motion of m1(continuous 

curve, in black) and of  m2 (dashed curve, in blue) for the following data:   

 

   ,2,3,1,1ˆ
2121 ===== mmkkF  

 

when the equations become 
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Where the amplitude is negative, the oscillations are out of phase with the force F.  The 

amplitudes go to infinity (remember we are assuming here zero damping) at the two 

frequencies where the denominators of equations 17.12.10 and11 are zero.  The 

amplitude of the motion of m2 is zero when the numerator of equation 17.12.11 is zero.  

This is at an angular frequency of ,/)( 121 mkk +  which is just the angular frequency of 

the motion of m1 held by the two springs between two fixed points.  In our numerical 

example, this is .8165.03/2 ==ω   This is an example of antiresonance. 

 

  

17.13   A Damped Driven System 

 

I’ll leave the reader to add some damping to the system described in section 17.12.  Let 

us here try it with the system described in section 17.7.    We’ll apply a periodic force to 

the left hand mass, and we’ll suppose that the damping constant for each mass is 

./ mb=γ    We could write the periodic force as tFF ω= sinˆ , but the algebra will be 

easier if we write it as .ˆ tieFF ω=   If the initial condition is such that F = 0 when t = 0, 

then we choose just the imaginary part of this in subsequent expressions. 

 

The equations of motion are 

   =xm && − the damping force xb&  

              − the tension in the left hand spring k1x 

FIGURE XVII.13 



 31 

              + the force F 

              + the tension in the middle spring k2(y − x) 

     (this last is a thrust whenever y < x) 

 

and   =ym && − the damping force yb&  

              − the thrust in the right hand spring k1y 

              − the tension in the middle spring k2(y − x) 

 

 

 

 

 

 

 

 

 

 

 

That is, 

   tieFykxkkxbxm ω=−+++ ˆ)( 221&&&    17.13.1 

 

and   .0)( 221 =−+++ xkykkybym &&&     17.13.2 

 

 

For the steady-state motion, seek solutions of the form 

 

   .andthatso,, 22 yiyxixyyxx ω=ω=ω−=ω−= &&&&&&  

 

The equations then become 

 

   tieFykxibmkk ω=−ω+ω−+ ˆ)( 2

2

21    17.13.3 

 

and   .0)( 2

212 =ω+ω−++− yibmkkxk    17.13.4 

 

There is now a little algebra to be carried out.  Solve these equations for x and y, and 

when, in doing so, there is a complex number in the denominator, multiply top and 

bottom by the conjugate in the usual way, so as to get x and y in the forms 

."'and"' iyyixx ++   Then find expressions for the amplitudes x̂ and ŷ .  After some 

algebra, the amount of which depends on one’s skill, experience and luck (it is not always 

obvious how to gather terms in the most economical way, and you need some luck in 

this) you eventually get, for the amplitudes of the motion 
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and   
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There are many variables in these expressions, but in order to see qualitatively what the 

steady state motion is like, I’m going to put F̂ , m and k1 = 1.  I think if I also put b = 1, 

this will give light damping in the sense described in Chapter 11.  As for k2, I am going to 

introduce a coupling coefficient α defined by .
1

or 12

21

2 kk
kk

k









α−

α
=

+
=α   This 

coupling constant will be close to zero if the middle spring is very weak, and 1 if the 

middle connector is a rigid rod.  The equations now become 
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and   
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For computational efficiency you might want to rewrite these equations a little. For 

example you could write 222 )1( ω+ω−  as )1(1 Ω−Ω− , where 2ω=Ω .  In any case, 

figure XVII.15 shows the amplitudes of the motions of the two masses as a function of 

frequency, for α  =  0.1, 0.5 and 0.9.  The continuous black curves are for the left hand 

mass; the dashed blue curve is for the right hand mass. 
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