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CHAPTER 12 

FORCED OSCILLATIONS 
 
 

12.1 More on Differential Equations 
 
   In Section 11.4 we argued that the most general solution of the differential equation     
 
     ay by cy" '+ + = 0     11.4.1 
 
is of the form 
 
     y Af x Bg x= +( ) ( ).     11.4.2 
 
In this chapter we shall be looking at equations of the form 
 
     ay by cy h x" ' ( ).+ + =     12.1.1 
 
If you look back at the arguments that led to the conclusion that equation 11.4.2 is the most general 
solution of equation 11.4.1, you will be able to conclude that 11.4.2 is still a solution of equation 
11.4.1, but it is not the only solution.  There is another function that is a solution, so that the most 
general solution to equation 12.1.1 is of the form 
 
     y Af x Bg x H x= + +( ) ( ) ( ).    12.1.2 
 
The solution H(x) is called the particular integral, while the part Af(x) + Bg(x) is the 
complementary function.   I shall be dealing in this chapter mainly with the particular integral, 
though we shall not entirely forget the complementary function. 
 
This is a book on classical mechanics rather than on differential equations, so I am not going into 
how to obtain the particular integral H(x) for a given h(x).  There are several ways of doing it; for 
those who know what they are and are in practice with them, Laplace transforms are among the 
more attractive methods.  Some readers will already know how to do it.  They will doubtless want 
to go back to equation 11.6.3 in the previous chapter and try their hand at finding the particular 
integral for that.  Those who do not may be happy and content to take my word for the particular 
integral in the sections that follow, or perhaps at least to differentiate it to verify that it is indeed a 
solution. 
 
 
12.2 Forced Oscillatory Motion.  
 
   We are thinking of a mass m attached to a spring of force constant k and subject to a damping 
force xb& , but also subject to a periodic sinusoidal force .cosˆ tF ω    The equation of motion is 
 
     ,cosˆ tFkxxbxm ω=++ &&&     12.2.1 
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or, if we divide by m: 
 
     .cosˆ2

0 tfxx ω=ω+γ+ &&&     12.2.2 
 
Here ./ˆˆ,/,/ 2

0 mFfmkmb ==ω=γ     ω is the forcing angular frequency and ω0 is the natural 
frequency of mass and spring in the absence of damping.  One part of the general solution of 
equation 12.2.2 is the complementary function, which we have dealt with at length in Chapter 11.  
In this section I shall be interested in the particular integral.  I shall not derive it here (those who are 
familiar with differential equations will be able to do so), but you should at least verify by 
differentiation and substitution that the following is a solution, and it is indeed the particular 
integral: 
 

   ( ) ( )[ ].sincos
ˆ

22
022222

0

ttfx ωγω+ωω−ω
ωγ+ω−ω

=    12.2.3 

 
This can also be written 
 

    
( )[ ] ( ),cos

ˆ
2
1

22222
0

α−ω
ωγ+ω−ω

= tfx     12.2.4 

 

where  
( )[ ] ( )[ ]

.tan,sin,cos 22
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0
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0
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2
1 ω−ω

γω
=α

ωγ+ω−ω

γω
=α

ωγ+ω−ω

ω−ω
=α    12.2.5 

 
 
The response frequency is the same as the forcing frequency, but there is a phase lag between x and 
F.  Figure XII.1 shows α as a function of Ω = ω ω/ 0  for several different values of Γ = γ ω/ .0  
         
The particular integral can also be written 
 
     ( ),cosˆ α−ω= txx      12.2.6 
 
where the displacement amplitude x̂  varies with forcing frequency ω as 
 

     
( )[ ]

.
ˆ

ˆ
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1

22222
0 ωγ+ω−ω

=
fx     12.2.7 

  
If we now introduce dimensionless quantities 
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xX     12.2.8 
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equations 12..2.5 and 12.2.7 become 
 

     tanα =
−
ΓΩ

Ω1 2      12.2.9 

 

and      
( )[ ]

.
1

1ˆ
2
1

2222 ΩΓ+Ω−
=X     12.2.10 

 
The phase lag α and the displacement amplitude ( ))/ˆ/(ˆˆ 2

0ω= fxX  are shown as a function of forcing 
frequency for various values of the damping constant in figures XII.1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A common misunderstanding is that the displacement amplitude is greatest when the forcing 
frequency is equal to the undamped frequency ω0.  That this is far from the case is immediately 
obvious from a glance at figure XII.2.  We can find the frequency that results in the greatest 
displacement amplitude by maximizing equation 12.2.7 or 12.2.10.  This is most easily achieved 
by minimizing the square of the denominator.  Let D be the square of the denominator of equation 
12.2.10, and let W  = Ω2 and G = Γ2.  Then D W GW= − +( ) ,1 2  which is greatest for W G= −1 1

2 , 
or, provided γ ω< 2 0 , 
     ω ω γ= −0

2 1
2

2 .     12.2.11 
 
This is less not only than ω0, but also less than ω'.  For the frequency given by equation 12.2.11, the 
displacement amplitude will be  
 

Γ = 

Ω 
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The locus of the maxima in figure XII.2 is found by eliminating γ from equation 12.2.7 and 

,0/ˆ =ωdxd  which gives 
 

     .
ˆ

ˆ
44

0

max
ω−ω

=
fx      12.2.13 

 
The solution given by equations 12.2.7 and 12.2.8 is the particular integral.  As pointed out in 
section 1 of this chapter, the complete solution is the sum of the particular integral and the 
complementary function, the latter being the unforced solutions of chapter 11.  The particular 
integral represents the steady state solution, whereas the complementary function, which dies out 
with time, is a transient solution.  When a mechanical oscillation is started, or when an alternating 
current electric circuit is first switched on, the solution is the sum of transient and steady state parts, 
the former more or less rapidly dying away.  Often when an electric fuse blows, the overload is 
caused by the large, but temporary, amplitude of the transient part of the solution.   
 

 

Γ 

2

Ω 
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Equations 12.2.7 and 8 give the displacement of the system as a function of time.  Differentiation 
with respect to time gives the velocity as a function of time.  Thus: 
 
     ( ),sinˆ α−ω−== tx vv&     12.2.14 
 
 

where     
( )[ ]2

1
22222

0

ˆ
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ωγ+ω−ω

ω
=

fv     12.2.15 

 
is the velocity amplitude.   In dimensionless units, this can be written 
 

     
( )[ ]

,
1
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2222 ΩΓ+Ω−

Ω
=V     12.2.16 

 

where      .
/ˆ
ˆˆ

0ω
=

f
V v       12.2.17   

 
This is illustrated in figure XII.3. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is left to the reader to show that the velocity amplitude is greatest and equal to γ/f̂   when ω = 
ω0. 
 

 

Γ 

2
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We have now found the phase lag and the displacement and velocity amplitudes as a function of 
forcing frequency, but I must now try the reader's patience one step further for the most important 
part of the analysis, which really must not be skipped.  Damping of oscillatory motion implies that 
some of the mechanical energy (which, in an undamped system, alternates between kinetic and 
potential energy) is lost - or, rather, that it is dissipated as heat.  This happens if the damping is 
caused by the oscillator being immersed in a viscous fluid, or if it is caused by the repeated 
expansion and compression of a spring, or, in an electric circuit, by the dissipation of heat in the 
resistive part of the circuit.  We aim now to find the rate at which the mechanical energy is 
dissipated as heat. 
 
We return to the equation of motion: 
 
     ,cosˆ tFkxxbxm ω=++ &&&     12.2.1 
 
and multiply each side by  :x&  
 
     .cosˆ2 tFxxkxxbxxm ω=++ &&&&&&    12.2.18 
 
Introduce the total mechanical energy:  
  

.2
2
12

2
1 kxxmE += &      12.2.19 

 
The instantaneous rate of change of E  is ,xkxxxm &&&& +  while the instantaneous rate at which F does 
work is .cosˆ tFx ω&   The difference (see equation 12.2.18), ,2xb&   is therefore the rate at which work 
is being dissipated as heat, which, of course, is zero if b = 0. 
 
The average of 2xb&  over a complete period is  

 

( ) ( ),sin
ˆ

2
2222

0

22
2 α−ω

ωγ+ω−ω
ω

= tfbxb&     12.2.20 

 
where the bars denote the average value over a period.  But  ( ) 2

12sin =α−ωt , so the 
average rate at which work is being dissipated as heat, for which I shall use the symbol ,Q&  is 
      

    ( )[ ].2

ˆ
22222

0

22

ωγ+ω−ω

ω
=

fbQ&      12.2.21 

 
The reader should check that the right hand side has the dimensions of rate of dissipation of energy 
and hence the SI unit of watts. 
 
In dimensionless units, in which ( )( ),2/ˆ/ 0

2* ω= fbQQ &&  this can be written 
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=Q&      12.2.22 

 
  This is illustrated in figure XII.4.   The reader can easily prove that the rate at which work is 
dissipated as heat is greatest when the forcing frequency is equal to ω0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary.  
 
 Phase lag: 
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 Displacement amplitude:         
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 Velocity amplitude: 
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fv        12.2.15 

 
 Rate of dissipation of work as heat: 
 

     ( )[ ].2

ˆ
22222

0

22
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ωγ
=

fmQ&       12.2.21 

 
In terms of dimensionless variables, 
 
 Phase lag: 
 

     tanα =
−
ΓΩ

Ω1 2        12.2.9 

 
  
 Displacement amplitude: 
 

     
( )[ ]

.
1

1ˆ
2
1

2222 ΩΓ+Ω−
=X      12.2.10 

 
 
 
 Velocity amplitude: 
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 Rate of dissipation of work as heat:   
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12.3 Electrical Analogue 
 
Suppose that an alternating potential difference tEE ω= sinˆ  is applied across an LCR circuit.  We 
refer to equation 11.6.3, and we see that the equation that governs the charge on the capacitor is 
 

     .sinˆ tE
C
QQRQL ω=++ &&&     12.3.1 

 
We can differentiate both sides with respect to time, and divide by L, and hence see that the current 
is given by 
 

     .cos
ˆ1 t
L

EI
LC

I
L
RI ω

ω
=++ &&&    12.3.2 

 
We can compare this directly with equation 12.2.2, so that we have 
 

    .
ˆˆ,1, 2

0 L
Ef

LCL
R ω

==ω=γ     12.3.3 

 
Then, by comparison with equation 12.2.5,  we see that I will lag behind E by α, where 
 

     tan .α
ω ω

ω

ω

=
−

=
−

R
L

LC C

R
L1 2 1

    12.3.4 

 
This is just what we obtain from the more familiar complex number approach to alternating current 
circuits. 
 


