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CHAPTER 10 

ROCKET MOTION 
 

1. Introduction 
 

If you are asked to state Newton's Second Law of Motion, I hope you will not reply: "Force 
equals mass times acceleration" − because that is not Newton's Second Law of Motion.  
Newton's Second Law of Motion is:   
 
The alteration of motion is ever proportional to the motive force impressed; and is made in 
the direction of the right line in which that force is impressed.   
 
In short:  Force equals Rate of Change of Momentum, or, in symbols, .pF &=   On 
differentiating the right hand side, we obtain  .vv mmF && +=   In other words, if the mass is 
constant then indeed force equals mass times acceleration − but only if the mass is constant.  
In a rocket, a very appreciable fraction of the mass of the rocket is fuel, which is burned and 
ejected at a very high rate, so that the mass of the rocket is rapidly diminishing during the 
motion.  It is one of the great problems of rocket design that such a high proportion of the 
initial mass must be fuel.  For this reason, other possible methods of driving spacecraft are 
being investigated by many groups.  For example, in the ion propulsion system of the Deep 
Space One spacecraft, electrically accelerated ions are ejected at high speed from the 
spacecraft.  The force produced and the acceleration are minute, but, because it can be kept 
up for a very long time, very high speeds can eventually be reached. "Solar sail" systems 
similarly rely on the very tiny force that can be exerted by the solar wind, but this tiny force 
can be exerted during most of the lifetime of a spacecraft's flight, and hence again high 
speeds can be reached. 
 
This chapter, however, concerns just conventional rocket motion.  In the next section I 
consider the motion of a rocket in space subject only to the one force from the high-speed 
ejection of burned fuel in the absence of any other forces.  At a later date, if I can find the 
time and energy, I may add further sections on rocket motion against gravity, which might be 
uniform or might fall off with distance from Earth, and we might include air resistance or 
not.  But to begin with, we deal solely with a rocket isolated in space and subject to no 
additional forces. 
 

2.    An Integral   
 

So that we don't get bogged down later with an integral that is going to crop up, see if you 
can do the following integration: 
 
     ( )∫ − .ln dtbta  
 

You should get    ( ) ( )+−−−− btabta
b

t ln1  constant. 
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3. The Rocket Equation. 
 

Initially at time t = 0, the mass of the rocket, including fuel, is m0. 
 
We suppose that the rocket is burning fuel at a rate of  b  kg s-1 so that, at time t, the mass of 
the rocket-plus-remaining-fuel is m = m0 − bt.  The rate of increase of mass with time is 
dm
dt

b= −  and is supposed constant with time.  (The rate of "increase" is, of course, negative.) 

 
We suppose that the speed of the ejected fuel, relative to the rocket, is V.  The thrust of the 

ejected fuel on the rocket is therefore Vb, or −V dm
dt

.  This is equal to the instantaneous mass 

times acceleration of the rocket: 
 

     ( ) .
0 dt

dbtm
dt
dmVb vv

−==     10.3.1 

 

Thus    .
0

0
0 ∫∫ −

=
t

btm
dtVbd

v
v      10.3.2 

 

(Don't be tempted to write the right hand side as .
0

0
∫ −

−
t

mbt
dtVb   You are anticipating a 

logarithm, so keep the denominator positive.  We have met this before in Chapter 6.)  On 
integration, we obtain 
 

     v =
−

V m
m bt

ln .0

0

     10.3.3 

 

The acceleration is   d
dt

Vb
m bt

v
=

−0

.      10.3.4  

 
At t = 0, the speed is zero and the acceleration is Vb/m0. 
 
At time t  =  m0/b, the remaining mass is zero and the speed and acceleration are both infinite.  
However, this is so only if the initial mass is 100% fuel and nothing else.  This is not 
realistic.  If the fraction of the total mass was initially f, the fuel will be completely expended 
after a time fm0/b at which time the speed will be ( )fV −− 1ln   (which is, of course, 
positive), and the speed will remain constant thereafter.  For example, if f = 99%, the final 
speed will be 4.6V. 
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Equations 10.3.3 and 10.3.4 are shown in figures X.1 and X.2.  In figure X.1, the speed of the 
rocket is plotted in units of V, the ejection speed of the burnt fuel.  The time is plotted in units 
of m0/b.  The fuel initially comprised 90% of the rocket, so that the rocket runs out of fuel in 
time 0.9 m0/b, at which time its speed is 2.3V.   In figure X.2, the acceleration is plotted in 
units of the initial acceleration, which is Vb/m0.  When the fuel is exhausted, the acceleration 
is ten times this.  
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In equation 10.3.3, v is of course dx/dt, so the equation can be integrated to obtain the 
distance:time relation: 
 

     .1ln
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tVx    10.3.5 

 
Elimination of t  between equations 10.3.3 and 10.3.5 gives the relation between speed and 
distance: 
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x vv     10.3.6 

 
If f  is the fraction of the initial mass that is fuel, the fuel supply will be exhausted after a 
time fm0/b, at which time its speed will be ( ),1ln fV −−  (this is positive, because 1 −f is less 
than 1), its acceleration will be 1/(1− f) and it will have travelled a distance 

( ) ( )[ ].1ln10 fff
b

Vm
−−+    If the entire initial mass is fuel, so that f = 1, the fuel will burn 

for a time m0i/b, at which time its speed and acceleration will be infinite, it will have travelled 
a finite distance Vm0/b and the mass will have been reduced to zero, This remarkable result is 
not very believable, for two reasons.  In the first place it is not very realistic.  More 
importantly, when the speed becomes comparable to the speed of light, the equations which 
we have developed for nonrelativistic speeds are no longer approximately valid, and the 
correct relativistic equations must be used.  The speed cannot then reach the speed of light as 
long as the remaining mass is non-zero. 
 
Equations 10.3.5 and 10.3.6 are illustrated in figures X.3 and X.4, in which f,  the fraction of 
the initial mass that is fuel, is 0.9.  The units for distance, time and speed in these graphs are, 
respectively, Vm0/b, m0/b and V. 
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4. Problems 
 

(i) Derive the integral in section 2. 
(ii) Integrate equation 10.3.2 to obtain equation 10.3.3 
(iii) Integrate equation 10.3.3 to obtain equation 10.3.5 
(iv) Obtain equation 10.3.6 

 
      In the following problems, (numbers v - viii) assume V  = 2 km s-1. 
                                                                       m0 = 2000 kg 
                       b  = 0.5 kg s-1         

                 f  =  90% 
 
(v) What is the maximum speed, and how long does it take to attain it? 
(vi) How long does it take to reach a speed of 3 km s-1? 
(vii) How long does it take for the rocket to travel 600 km? 
(viii) How fast is it moving when it has travelled 300 km? 

 


