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CHAPTER 1 

CENTRES OF MASS 

 

1.1 Introduction, and some definitions. 

 

This chapter deals with the calculation of the positions of the centres of mass of various bodies.  

We start with a brief explanation of the meaning of centre of mass, centre of gravity and 

centroid, and a very few brief sentences on their physical significance.  Many students will have 

seen the use of calculus in calculating the positions of centres of mass, and we do this for 
  

        Plane areas 

  i  for which the equation is given in x-y coordinates; 

            ii  for which the equation is given in polar coordinates. 

 

        Plane curves 

  i  for which the equation is given in x-y coordinates; 

            ii  for which the equation is given in polar coordinates. 

 

        Three dimensional figures such as solid and hollow hemispheres 

        and cones. 
 

 

There are some figures for which interesting geometric derivations can be done without calculus;  

for example, triangular laminas, and solid tetrahedra, pyramids and cones.  And the theorems of 

Pappus allow you to find the centres of mass of semicircular laminas and arcs in your head with 

no calculus. 
 

First, some definitions. 
 

Consider several point masses in the x-y plane: 
 

     m1 at (x1 , y1) 

 

     m2  at  (x2 , y2) 

 

             etc. 

 

 

The centre of mass is a point ( )yx, whose coordinates are defined by 
 

   

M

xm
x

ii∑
=   

M

ym
y

ii∑
=      1.1.1 

 

where M is the total mass  Σ mi .  The sum   m xi i∑   is the first moment of mass with respect to 

the y axis.  The sum m yi i∑  is the first moment of mass with respect to the x axis. 
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If the masses are distributed in three dimensional space, with m1 at (x1, y1, z1 ), etc,. the centre of 

mass is a point ( , , )x y z such that  

 

 

M

xm
x

ii∑
=   

M

ym
y

ii∑
=   

M

zm
z

ii∑
=     1.1.2 

   

    

In this case, m x m y m zi i i i i i∑ ∑ ∑, , are the first moments of mass with respect to the y-z, z-x and 

x-y planes respectively.  
 

In either case we can use vector notation and suppose that r1, r2, r3 are the position vectors of m1, 

m2 , m3 with respect to the origin, and the centre of mass is a point whose position vector r  is 

defined by 
 

        

         

.
M

m ii∑
=

r
r       1.1.3 

 

 

In this case the sum is a vector sum and mi i∑ r ,  a vector quantity, is the first moment of mass 

with respect to the origin.  Its scalar components in the two dimensional case are the moments 

with respect to the axes; in the three dimensional case they are the moments with respect to the 

planes. 
 

Many early books, and some contemporary ones, use the term "centre of gravity".  Strictly the 

centre of gravity is a point whose position is defined by the ratio of the first moment of weight to 

the total weight.  This will be identical to the centre of mass provided that the strength of the 

gravitational field g (or gravitational acceleration) is the same throughout the space in which the 

masses are situated.  This is usually the case, though it need not necessarily be so in some 

contexts. 

  

For a plane geometrical figure, the centroid or centre of area, is a point whose position is defined 

as the ratio of the first moment of area to the total area.  This will be the same as the position of 

the centre of mass of a plane lamina of the same size and shape provided that the lamina is of 

uniform surface density. 
 

 

Calculating the position of the centre of mass of various figures could be considered as merely a 

make-work mathematical exercise.  However, the centres of gravity, mass and area have 

important applications in the study of mechanics. 
 

For example, most students at one time or another have done problems in static equilibrium, such 

as a ladder leaning against a wall. They will have dutifully drawn vectors indicating the forces on 

the ladder at the ground and at the wall, and a vector indicating the weight of the ladder.  They 

will have drawn this as a single arrow at the centre of gravity of the ladder as if the entire weight 

of the ladder could be "considered to act" at the centre of gravity.  In what sense can we take this 

liberty and "consider all the weight as if it were concentrated at the centre of gravity"?  In fact 
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the ladder consists of many point masses (atoms) all along its length. One of the equilibrium 

conditions is that there is no net torque on the ladder. The definition of the centre of gravity is 

such that the sum of the moments of the weights of all the atoms about the base of the ladder is 

equal to the total weight times the horizontal distance to the centre of gravity, and it is in that 

sense that all the weight "can be considered to act" there.   Incidentally, in this example, "centre 

of gravity" is the correct term to use.  The distinction would be important if the ladder were in a 

nonuniform gravitational field. 
 

In dynamics, the total linear momentum of a system of particles is equal to the total mass times 

the velocity of the centre of mass.  This may be "obvious", but it requires formal proof, albeit 

one that follows very quickly from the definition of the centre of mass. 
 

Likewise the kinetic energy of a rigid body in two dimensions equals ,2

2
12

2
1 ω+ IMV  where M 

is the total mass, V the speed of the centre of mass, I the rotational inertia and ω the angular 

speed, both around the centre of mass.  Again it requires formal proof, but in any case it 

furnishes us with another example to show that the calculation of the positions of centres of mass 

is more than merely a make-work mathematical exercise and that it has some physical 

significance. 
 

If a vertical surface is immersed under water (e.g. a dam wall) it can be shown that the total 

hydrostatic force on the vertical surface is equal to the area times the pressure at the centroid. 

This requires proof (readily deduced from the definition of the centroid and elementary 

hydrostatic principles), but it is another example of a physical application of knowing the 

position of the centroid.   

 
 

1.2   Plane triangular lamina 
 

Definition:  A median of a triangle is a line from a vertex to the mid point of the opposite side. 

  
 

Theorem I.  The three medians of a triangle are concurrent (meet at a single, unique point) at a 

point that is two-thirds of the distance from a vertex to the mid point of the opposite side. 

 

Theorem II.  The centre of mass of a uniform triangular lamina  (or the centroid of a triangle) is 

at the meet of the medians. 
 

The proof of I can be done with a nice vector argument (figure I.1): 

 

Let A, B be the vectors  OA, OB.  Then A + B is the diagonal of the parallelogram of which OA 

and OB are two sides, and the  position vector of the point C1   is   1
3
(A + B). 

 

To get C2  , we see that 
 

 C2  =  A +  2
3

(AM2 )  =  A +  2
3

(M2  − A)  =  A +  2
3

( 1
2

B − A)  =  1
3
(A + B) 
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FIGURE I.1 

FIGURE 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus the points C1  and C2 are identical, and the same would be true for the third median, so 

Theorem I is proved. 
 

Now consider an elemental slice as in figure I.2.  The centre of mass of the slice is at its mid-

point. The same is true of any similar slices parallel to it.  Therefore the centre of mass is on the 

locus of the mid-points - i.e. on a median. Similarly it is on each of the other medians, and 

Theorem II is proved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That needed only some vector geometry.  We now move on to some calculus. 
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1.3 Plane areas. 

 

Plane areas in which the equation is given in x-y coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

We have a curve y  =  y(x) (figure I.3) and we wish to find the position  of the centroid of the 

area under the curve between x = a and  x = b.   We consider an elemental slice of width δx at a 

distance x from the y axis.  Its area is yδx, and so the total area is 

 
    

     ∫=
b

a
ydxA       1.3.1 

 

The first moment of area of the slice with respect to the  y axis is xyδx, and so the first moment 

of the entire area is  ∫
b

a
 xydx. 

 

 

Therefore   
A

xydx

ydx

xydx
x

b

a

b

a

b

a ∫

∫

∫
==      1.3.2  

          

 

 

FIGURE I.3 
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For y  we notice that the distance of the centroid of the slice from the x axis is   1
2

 y, and 

therefore the first moment of the area about the x axis is  1
2

 y.yδx. 

 

Therefore   
A

dxy
y

b

a

2

2
∫

=        1.3.3 

 
 

Example.  Consider a semicircular lamina, 0,222 >=+ xayx , see figure I.4: 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are dealing with the parts both above and below the x axis, so the area of the semicircle is 

∫=
a

ydxA
0

2  and the first moment of area is 2 ∫
a

xydx
0

.  You should find 

.4244.0)3/(4 aax =π=  

 

Now consider the lamina 0,222 >=+ yayx  (figure I.5):  

 

 

 

 

 

 

 
 

FIGURE I.4 

FIGURE I.5 
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The area of the elemental slice this time is yδx (not 2yδx), and the integration limits are from −a 

to +a.   To find y , use equation 1.3.3, and you should get y = 0.4244a. 
 

 

 

      Plane areas in which the equation is given in polar coordinates. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We consider an elemental triangular sector (figure I.6) between θ  and θ  + δθ .  The "height" of 

the triangle is r and the "base" is rδθ .  The area of the triangle is .2

2
1 δθr  

 

Therefore the whole area  =  .2

2
1 θ∫

β

α
dr      1.3.4 

   

 

The horizontal distance of the centroid of the elemental sector from the origin  (more correctly, 

from the "pole" of the polar coordinate system) is 2
3
r cosθ .  The first moment of area of the 

sector with respect to the y axis is 
 

   θδθ=δθ×θ coscos 3

3
12

2
1

3
2 rrr  

 

so the first moment of area of the entire figure between θ  = α and θ  = β  is 

  

       ∫
β

α
θθ .cos3

3
1 dr  

FIGURE I.6 
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Therefore      

.

3

cos2

2

3

∫

∫
β

α

β

α

θ

θθ
=

dr

dr
x       1.3.5  

      

 

Similarly   

.

3

sin2

2

3

∫

∫
β

α

β

α

θ

θθ
=

dr

dr
y       1.3.6  

 

 

Example:  Consider the semicircle r = a,  θ  = −π/2 to +π/2.  
 

    

                    .
3

4
cos

3

2cos

3

2 2/

2/2/

2/

2/

2/
∫

∫

∫ π+

π−π+

π−

π+

π−

π
=θθ

π
=

θ

θθ
=

a
d

a

d

da
x    1.3.7 

     

The reader should now try to find the position of the centroid of a circular sector (slice of pizza!) 

of angle 2α.  The integration limits will be −α to +α.   When you arrive at a formula (which you 

should keep in a notebook for future reference), check that it goes to 4a/(3π ) if  α  = π/2, and to 

2a/3 if  α = 0. 
 

 

1.4 Plane curves 

             Plane curves in which the equation is given in x-y coordinates 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 

I.7 
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Figure I.7 shows how an elemental length δs is related to the corresponding increments in x and 

y: 

 

  ( ) ( )[ ] ( )[ ] .1//1
2/122/122/122

ydydxxdxdyyxs δ+=δ+=δ+δ=δ    1.4.1 

 

Consider a wire of mass per unit length (linear density) λ  bent into the shape y y x= ( ) between 

x = a and x = b.  The mass of an element ds is  λ δs, so the total mass is 
 

   ( )[ ] ./1
2/1

2
dxdxdyds

b

a∫ ∫ +λ=λ      1.4.2 

 

The first moments of mass about the y- and x-axes are respectively 
 

    ( )[ ]∫ +λ
b

a
dxdxdyx

2/12
/1    and     ( )[ ] .)/1

2/1
2

dxdxdyy
b

a∫ +λ     1.4.3  

 

If the wire is uniform and λ is therefore not a function of x or y, λ can come outside the integral 

signs in equations 1.4.2 and 1.4.3, and we hence obtain 
 

 

          

 

( )[ ]
( )[ ]

( )[ ]
( )[ ]

,
/1

/1
,

/1

/1

2/12

2/12

2/12

2/12

∫

∫

∫

∫

+

+
=

+

+
=

b

a

b

a

b

a

b

a

dxdxdy

dxdxdyy
y

dxdxdy

dxdxdyx
x   1.4.4 

 

 

the denominator in each of these expressions merely being the total length of the wire. 
 

 

 

Example:  Consider a uniform wire bent into the shape of the semicircle  x
2
 + y

2
  = a

2
 ,   x > 0. 

 

First, it might be noted that one would expect x  > 0.4244a (the value for a plane semicircular 

lamina). 
 

The length (i.e. the denominator in equation 1.4.4) is just πa. Since there are, between x and x + 

δx, two elemental lengths to account for, one above and one below the x axis, the numerator of 

the first of equation 1.4.4 must be 
 

     ( )[ ] ./12
2/1

0

2
dxdxdyx

a

∫ +  

 

 

In this case   ( )
( )

.,
2/122

2/122

xa

x

dx

dy
xay

−

−
=−=  

 

The first moment of length of the entire semicircle is 
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( )
.212

0 2/122

2/1

0 22

2

∫∫
−

=








−
+

aa

xa

xdx
adx

xa

x
x    

 

 

From this point the student is left to his or her own devices to derive  .6366.0/2 aax =π=  
 

 

 

 

 

        Plane curves in which the equation is given in polar coordinates. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure I.8  shows how an elemental length δs is related to the corresponding increments in r and  

θ  : 
 

 

  ( ) ( )[ ] ( )[ ] ( )[ ] .1
2/122/1

222/122
rrrrrs

dr
d

d
dr δ+=δθ+=δθ+δ=δ θ
θ

  1.4.5 

   

 

The mass of the curve (between  θ  = α  and θ  = β) is 
 

 

    ( )[ ] θ+λ∫
β

α θ
dr

d
dr

2/1
22

. 

FIGURE I.8 
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The first moments about the y- and x-axes are (recalling that x = r cosθ   and y =  rsinθ  ) 
 

 

   ( )[ ]∫
β

α θ
+θλ

2/1
22

cos rr
d
dr and    ( )[ ] .sin

2/1
22

θ+θλ∫
β

α θ
drr

d
dr  

 

 

If λ is not a function of  r or θ, we obtain 
 

 

  ( )[ ] ( )[ ] θ+θ=θ+θ= ∫∫
β

α θ

β

α θ
drrydrrx

d
dr

Ld
dr

L

2/1
221

2/1
221 sin,cos   1.4.6  

 

 

 

where L is the length of the wire. 

 

Example:  Again consider the uniform wire of figure I.8 bent into the shape of a semicircle.  The 

equation in polar coordinates is simply r = a, and the integration limits are  θ π= − / 2 to 

.2/π+=θ  The length is  πa. 
 

Thus    [ ] .
2

0cos
1 2/12/

2/

2

π
=θ+θ

π
= ∫

π+

π−

a
daa

a
x  

 
 

The reader should now find the position of the centre of mass of a wire bent into the arc of a 

circle of angle 2α.  The expression obtained should go to  2a/π as α  goes to  π/2, and to  a as  α  

goes to zero. 
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1.5   Summary of the formulas for plane laminas and curves 

 

 

              

 

 
    

 

 

 

    ( )xyy =   ( )θ= rr  

 

  

        ∫=
b

aA
xydxx 1

  

θ

θθ
=

∫

∫
β

α

β

α

dr

dr
x

2

3

3

cos2
 

  

   

    ∫=
b

aA
dxyy

2

2

1
  

∫

∫
β

α

β

α

θ

θθ
=

dr

dr
y

2

3

3

sin2
 

 

 

 

 

 
 

 

     

 

   ( )xyy =          ( )θ= rr  

 

 

  ( ) dxxx b
a dx

dy

L

2/1
2

1 1∫ 



 +=     ( )[ ] θ+θ= ∫

β

α θ
drrx

d
dr

L

2/1
221 cos  

 

 

  ( ) dxyy b
a dx

dy

L

2/1
2

1 1∫ 



 +=      ( )[ ] θ+θ= ∫

β

α θ
drry

d
dr

L

2/1
221 sin  

 

 

 

 

 

 

 

 

Uniform Plane Lamina 

SUMMARY 

Uniform Plane Curve 
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1.6   The Theorems of Pappus.   

 (Pappus Alexandrinus, Greek mathematician, approximately 3rd or 4th century AD.) 

 

            I.  If a plane area is rotated about an axis in its plane, but  which 

                does not cross the area, the volume swept out  equals 

     the area times the distance moved by the centroid. 

. 

 

 II. If a plane curve is rotated about an axis in its plane, but which 

                does not cross the curve, the area swept out equals 

     the length times the distance moved by the centroid. 

      

 
 

These theorems enable us to work out the volume of a solid of revolution if we know the position 

of the centroid of a plane area, or vice versa;  or to work out the area of a surface of revolution if 

we know the position of the centroid of a plane curve or vice versa.  It is not necessary that the 

plane or the curve be rotated through a full 360
o
. 

 

 

We prove the theorems first.  We then follow with some examples. 

 

 

 

 

 

 
 

 

 

 

 
 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

y 

z 

δA 

x 

φ 

x 

FIGURE I.9 

A 



 14 

 

 

Consider an area A in the zx plane (figure I.9), and an element  δA within the area at a distance x 

from the z axis.  Rotate the area through an angle φ  about the z axis. The length of the arc traced 

by the element δA in moving through an angle φ is xφ , so the volume swept out by δA is xφδA.  

The volume swept out by the entire area is ∫φ xdA .  But the definition of the centroid of A is such 

that its distance from the z axis is given by ∫= xdAAx .  Therefore the volume swept out by the 

area is φx A.  But φx is the distance moved by the centroid, so the first theorem of Pappus is 

proved. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a curve of length L in the zx plane (figure I.10), and an  element δs of the curve at a 

distance x from the z axis.  Rotate  the curve through an angle φ  about the z axis.  The length of 

the arc traced by the element ds in moving through an angle φ  is xφ , so the area swept out by δs 

is xφδs.  The area swept out by the entire curve is ∫φ xds .  But the definition of the centroid is 

such that its distance from the z axis is given by ∫= xdsLx .  Therefore the area swept out by the 

curve is φx L .  But xφ is the distance moved by the centroid, so the second theorem of Pappus is 

proved.  
 

 

 

 

 

x 

z 

y 

x 

δs 

φ 

FIGURE I.10 
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Applications of the Theorems of Pappus. 
  

Rotate a plane semicircular figure of area 1
2

2πa through 360
o
 about its diameter.  The volume 

swept out is 4
3

3πa , and the distance moved by the centroid is 2πx .  Therefore by the theorem of 

Pappus,  ( ).3/4 πax =  
 

Rotate a plane semicircular arc of length aπ  through 360
o
 about its diameter.  Use a similar 

argument to show that x a= 2 / .π  
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

Consider a right-angled triangle, height h, base a (figure I.11). Its centroid is at a distance a/3 

from the height h.  The area of the triangle is ah/2.  Rotate the triangle through 360
o
 about h.  

The distance moved by the centroid is 2πa/3. The volume of the cone swept out is ah/2  times 

2πa/3, equals  πa
2
h/3. 

 

 

Now consider a line of length l inclined at an angle α to the y axis (figure I.12).  Its centroid is at 

a distance αsin
2
1 l  from the y axis.  Rotate the line through 360

o
 about the y axis. The distance 

moved by the centroid is .sinsin2
2
1 απ=α×π ll   The surface area of the cone swept out is 

.sinsin 2 απ=απ× lll  

 

FIGURE I.11 
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The centre of a circle of radius b is at a distance a from the y axis.  It is rotated through 360
o 

 

about the y axis to form a torus ( figure I.13).  Use the theorems of Pappus to show that the 

volume and surface area of the torus are, respectively, .4and2 222 abab ππ  
 

     V ab= 2 2 2π  

 

     .4 2abA π=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l 

α 

FIGURE I.12 

FIGURE I.13 
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FIGURE I.14 

 
 

 

 

1.7 Uniform solid tetrahedron, pyramid and cone. 

 

 Definition.  A median of a tetrahedron is a line from a vertex 

 to the centroid of the opposite face. 

 

 Theorem I.  The four medians of a tetrahedron are concurrent 

 at a point 3/4 of the way from a vertex to the centroid of 

 the opposite face. 

 

 Theorm II.  The centre of mass of a uniform solid tetrahedron 

 is at the meet of the medians. 
  

Theorem I can be derived by a similar vector geometric argument used for the plane triangle.  It 

is slightly more challenging than for the plane triangle, and it is left as an exercise for the reader.  

I draw two diagrams (figure I.14). One shows the point C1  that is 3/4 of the way from the vertex 

A to the centroid of the opposite face.  The other shows the point C2  that is 3/4 of the way from 

the vertex B to the centroid of its opposite face.  .  You should be able to show that 

 

C1  =   (A + B + D)/4. 
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In fact this suffices to prove Theorem I, because, from the symmetry between A, B and D, one is 

bound to arrive at the same expression for the three-quarter way mark on any of the four 

medians.  But for reassurance you should try to show, from the second figure, that 

 

C2  =   (A + B + D)/4. 
   

The argument for Theorem II is easy, and is similar to the corresponding argument for plane 

triangles. 

    

   Pyramid. 

 

A right pyramid whose base is a regular polygon (for example, a square) can be considered to be 

made up of several tetrahedra stuck together.  Therefore the centre of mass is 3/4 of the way 

from the vertex to the mid point of the base. 

 

   Cone. 

 

A right circular cone is just a special case of a regular pyramid in which the base is a polygon 

with an infinite number of infinitesimal sides.  Therefore the centre of mass of a uniform right 

circular cone is 3/4 of the way from the vertex to the centre of the base. 

 

We can also find the position of the centre of mass of a solid right circular cone by calculus.  We 

can find its volume by calculus, too, but we'll suppose that we already know, from the theorem 

of Pappus, that the volume is 1
3
× base × height. 

 
 

 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE I.15 
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Consider the cone in figure I.15, generated by rotating the line y = ax/h (between x = 0 and x = h) 

through 360
o
  about the x axis.  The radius of the elemental slice of thickness δx at x is ax/h.   Its 

volume is ./ 222
hxxa δπ  

   

Since the volume of the entire cone is πa
2
h/3, the mass of the slice is 

 

    ,
3

3 3

22

2

22

h

xMxha

h

xxa
M

δ
=

π
÷

δπ
×                

 

where M is the total mass of the cone.  The first moment of mass of the elemental slice with 

respect to the y axis is 3Mx
3δx/h

3
.       

  

The position of the centre of mass is therefore 
 

     .
3

0 4
33

3
hdxx

h
x

h

∫ ==  

 

1.8   Hollow cone.     

 

The surface of a hollow cone can be considered to be made up of an infinite number of 

infinitesimally slender isosceles triangles, and therefore the centre of mass of a hollow cone 

(without base) is 2/3 of the way from the vertex to the midpoint of the base. 

 
 

1.9    Hemispheres. 

 

   Uniform solid hemisphere 
 

Figure I.4 will serve.  The argument is exactly the same as for the cone. The volume of the 

elemental slice is ( ) ,222 xxaxy δ−π=δπ   and the volume of the hemisphere is  2πa
3
/3, so the 

mass of the slice is 
 

  ( ) ( )
,

2

3
)3/2(

3

22
22

a

xxaM
axxaM

δ−
=π÷δ−π×  

 

where M is the mass of the hemisphere.  The first moment of mass of the elemental slice is x 

times this, so the position of the centre of mass is 

 
  

        ( ) .
8

3

2

3

0

22

3

a
dxxax

a
x

a

=−= ∫  
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   Hollow hemispherical shell. 
 

We may note to begin with that we would expect the centre of mass to be further from the base 

than for a uniform solid hemisphere. 
 

 

Again, figure I.4 will serve. The area of the elemental annulus is 2πaδx (NOT 2πyδx!) and the 

area of the hemisphere is 2πa
2
.  Therefore the mass of the elemental annulus is 

 

    ./)2(2 2 axMaxaM δ=π÷δπ×  

 

The first moment of mass of the annulus is x times this, so the position of the centre of mass is 
 

 

    .
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1.10   Summary. 

     

SUMMARY 
 

 

 

 Triangular lamina:       2/3 of way from vertex to midpoint of opposite side 

 

 Solid Tetrahedron, Pyramid, Cone:     3/4 of way from vertex to centroid of  

            opposite face. 

 

 Hollow cone:    2/3 of way from vertex to midpoint of base. 

 

 Semicircular lamina:   4a/(3π ) 
 

 Lamina in form of a sector of a circle, angle 2α :   ( 2a sinα )/(3α) 

 

 Semicircular wire:    2a/π 
 

 Wire in form of an arc of a circle, angle   2α:   ( a sin α) /α 
 

 Solid hemisphere:     3a/8 
 

      Hollow hemisphere:    a/2  

       

 


